
Relational Equivalence Proofs Between Imperative
and MapReduce Algorithms

Bernhard Beckert, Timo Bingmann, Moritz Kiefer,
Peter Sanders, Mattias Ulbrich, and Alexander Weigl

Institute of Theoretical Informatics
Karlsruhe Institute of Technology, Germany

Abstract. Distributed programming frameworks like MapReduce, Spark and
Thrill, are widely used for the implementation of algorithms operating on large
datasets. However, implementing in these frameworks is more demanding than
coming up with sequential implementations. One way to achieve correctness
of an optimized implementation is by deriving it from an existing imperative
sequential algorithm description through a sequence of behavior-preserving
transformations.

We present a novel approach for proving equivalence between imperative and
deterministic MapReduce algorithms based on partitioning the equivalence
proof into a sequence of equivalence proofs between intermediate programs
with smaller differences. Our approach is based on the insight that proofs
are best conducted using a combination of two kinds of steps: (1) uniform
context-independent rewriting transformations; and (2) context-dependent
flexible transformations that can be proved using relational reasoning with
coupling invariants.

We demonstrate the feasibility of our approach by evaluating it on two pro-
totypical algorithms commonly used as examples in MapReduce frameworks:
k-means and PageRank. To carry out the proofs, we use a higher-order
theorem prover with partial proof automation. The results show that our
approach and its prototypical implementation enable equivalence proofs of
non-trivial algorithms and could be automated to a large degree.

1 Introduction

Motivation. Frameworks for functional programming for distributed programs,
such as MapReduce [10], Spark [25] and Thrill [4] address the challenges arising in
the implementation of large-scale distributed algorithms by providing a limited set
of operations whose execution is automatically parallelized and distributed among
the nodes in a cluster. However, designing efficient algorithms in these frameworks is
a challenge in itself. A good starting point for a distributed algorithm is an existing
imperative algorithm which is then translated into a MapReduce framework. This
initial program could be taken from a textbook on algorithms or could be a sequential
implementation from an existing code base that is to be optimized. However, the
translation into MapReduce can be non-trivial, and the original algorithmic structure
is often lost during the translation since imperative constructs do not translate
directly into the functional MapReduce primitives. Implementing efficient algorithms



2 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

using MapReduce frameworks can thus require significant and elaborate alterations
to a given imperative algorithm.

By proving the equivalence of the original imperative algorithm and its MapReduce
version, one can verify that no bugs have been introduced during the translation.
While such proofs do not directly provide correctness guarantees for the MapReduce
algorithm, they transfer correctness results from the imperative version to the
MapReduce implementation. The transferred correctness properties can be formal
proofs whose reach then extends to the distributed implementation, but can also be
informal arguments, e.g., if the algorithm is a well-known, simple textbook reference
implementation or if it has been successfully applied previously.

In this paper, we use the term “MapReduce” in a broader sense than implied by
the two functions “map” and “reduce”. While some frameworks such as Hadoop’s
MapReduce [24] module are programmed strictly by specifying these two functions,
the more popular and widely used distributed frameworks provide many additional
primitives for performance reasons and to make them easier to program with.
Theoretically, these additional primitives can be reduced to only map and reduce
operations [6], but this overly complicates the program description and is generally
not used in real-world applications.

Contribution of this paper. We present an interactive verification approach with
which a MapReduce implementation of an algorithm can be proved equivalent to an
imperative implementation (to the best of our knowledge this is the first framework
for the purpose of such equivalence proofs, see Sect. 6). Proofs are conducted as
chains of individual, smaller behavior-preserving program transformations.

One novelty of the approach is that it brings together two approaches for
equivalence reasoning: (1) proving equivalence by means of a series of uniform
context-independent rewriting transformations; and (2) proving equivalence by
means of relational deductive program verification using coupling invariants. We
show how the approaches can be applied alternatingly. We identified a catalogue of
13 individual rules. Correctness of 10 of those rules was proven formally using the
Coq theorem prover.

Our approach has a high potential for automation. The required interaction
is designed to be as high-level as possible. The proof is guided by user-specified
intermediate programs from which the individual transformations are derived. The
rules are designed such that their side conditions can be proved automatically and we
describe how pattern matching can be used to allow for a more flexible specification
of intermediate steps.

We describe a workflow for integrating this approach with existing interactive
theorem provers. We have successfully implemented the approach as a prototype
within the interactive theorem prover Coq [22] and evaluated the feasibility of our
approach by applying it to the k-means and PageRank algorithms. These two are
prototypical algorithms commonly used as examples in MapReduce frameworks,
because they exhibit the most common patterns found in large-scale distributed
data processing applications. By showing that our approach can be applied to these
two examples, we demonstrate that it can be extended to a much larger set of
applications.



Equivalence of Imperative and MapReduce Algorithms 3

Imperative
algorithm

. . . A B . . . MapReduce
algorithm∼=∼= ∼=

Imperative
algorithm

. . . A B . . . MapReduce
algorithm

∼=

translates to

∼= ∼=

Imperative Language (IL)

Formalized Functional Language (FFL)

implies

Fig. 1: Chain of equivalent programs is translated into formalized functional language

Interleaving different types of proofs. We came to the important insight that
the proof task requires the interplay of two kinds of sub-proofs:

(1) Uniform, context-independent and pattern-driven transformations that can
locally change one program into another with a severely changed control flow.
Rewriting techniques can be applied to perform such proof steps.

(2) Context-dependent but flexible equivalence proofs that preserve the control
flow, but change the data representation. Relational deductive reasoning using
coupling invariants allows us to conduct such proof steps.

In previous work [12,18], we have explored how equivalence proofs can be conducted
effectively if the two programs to be compared exhibit a similar control flow. In this
case, the relational reasoning approach (2) using coupling predicates that logically
manifest the relation between the two program states at given synchronization points
proved very successful, and often runs fully automatically. The reason for this is
that if coupling predicates can be used, only the relationship between two current
states needs to be captured in logic – functional properties (what the code actually
computes) need not be formalized. The less similar the two compared programs
are, the more difficult and less effective becomes this type of reasoning. However,
differences in the control flows can often be bridged by aligning them through
behavior-preserving rewriting rules of type (1) (like loop unrolling, loop peeling,
function inlining) which are applied prior to the verification [17].

The presented approach now generalizes this idea by interleaving steps of both
types. This permits us to apply relational reasoning even for the semantically larger
gap between implementations of different programming paradigms. Both types of
rules (context-independent rewriting and context-dependent relational reasoning)
are necessary for such equivalence proofs: Rewriting rules can modify the control
flow (and sometimes the data representation), but – being pattern-driven – are very
inflexible in the input they can operate on. Relational reasoning on the other hand
is not local; thus, it can be very flexible to show differently laid out programs are
correct – as long the control flow is generally kept.

Overview of the approach. The main challenge in proving the equivalence of
an imperative and a MapReduce algorithm lies in the potentially large structural



4 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

difference between two such algorithms. Existing relational verification approaches
(like [13,12,19,23]) exploit the fact that the two program versions to be compared are
structurally similar, which allows the verification to focus on describing and proving
the similarity of the implementations rather than describing what they actually
compute. To deal with the complexity arising from the large structural differences,
the equivalence of imperative and MapReduce algorithms is not shown in one step,
but as a succession of equivalence proofs for structurally closer program versions.

To this end, we require that the translation of the algorithm is broken down
(by the user) into a chain of intermediate programs. For each pair of neighboring
programs in this chain, the difference is comparatively small and can usually be
reduced to one isolated transformation.

The imperative algorithm, the intermediate programs, as well as the MapReduce
implementation, are given in a high-level imperative programming language (IL). IL
is based on a While language and supports integers, booleans, fixed-length arrays
and sum and product types. It does not support recursion. Besides the imperative
language constructs, IL supports MapReduce primitives. Given that we have stated
previously that MapReduce programs tend to be of a more functional nature, it
might seem odd at first to not use a functional language for specifying MapReduce
algorithms. However, most existing MapReduce frameworks are not implemented
as separate programming languages but as frameworks offered as APIs on top of
imperative languages (Java for Hadoop, Scala for Spark, or C++ for Thrill). Thereby
sequential parts of MapReduce algorithms can still be implemented using imperative
language features.

Each program specified in the high-level imperative language is then automatically
translated into the formalized functional language (FFL) described in Sect. 2. FFL is
a deterministic language which might seem surprising given that for performance
reasons MapReduce frameworks often do not guarantee determinism. However, the
source of non-determinism in MapReduce algorithms are non-associative and non-
commutative functions used with the “reduce” primitive. If all used reducer functions
are associative and commutative, then the resulting algorithm is deterministic (some
frameworks only require associativity). Reducer associativity and commutativity
are assumptions for the transformation into FFL which are not verified within
our approach. Often, the justification is trivial, e. g., for addition on natural or
rational numbers. For non-trivial cases, Chen et al. [8,9] present formal verification
approaches.

The equivalence proofs are conducted on programs in FFL. An overview of this
process can be seen in Fig. 1. For each pair of neighboring programs in the chain, a
proof obligation is generated that requires proving their equivalence. These proof
obligations are then discharged independently of each other (using the workflow
described in Sect. 4). Since, by construction, the semantics of IL programs is the
same as that of corresponding FFL programs, the equivalence of two IL programs
follows from the equivalence of their translations to FFL. Figure 2 shows two example
IL programs for calculating the element-wise sum of two arrays.

The implementation of our approach based on the Coq theorem prover has
only limited proof automation and still requires a significant amount of interactive
proofs. We are convinced, however, that our approach can be extended such that
it becomes highly automatised and only few user interactions or none at all are



Equivalence of Imperative and MapReduce Algorithms 5

Function SumArrays(xs,ys)
begin

sum ← replicate(n, 0);
for i← 0 to n− 1 do

sum[i ]← xs[i ] + ys[i ];
end
return sum;

end

Function SumArraysZipped(xs,ys)
begin

sum ← replicate(n, 0);
zipped ← zip(xs,ys);
for i← 0 to n− 1 do

sum[i ] ← fst(zipped[i ]) +
snd(zipped[i ]);

end
return sum;

end

Fig. 2: Two IL programs which calculate the element-wise sum of two arrays.

required – besides providing the intermediate programs. Further challenges include
the extension of our approach to features such as references and aliasing which are
commonly found in imperative languages.

Structure of this paper. In Sec. 2, we lay the formal groundwork for our approach
by defining the programming language used for equivalence proofs and the notion of
program equivalence used in this paper. Sec. 3 describes the two kinds of program
transformations that we have identified and the techniques for proving equivalence
using these transformations. The technical framework for equivalence proofs and the
potential for automation are described in Sec. 4 and their its evaluation is in Sec. 5.
In Sec. 6, we discuss work related to the ideas presented in this paper. Finally, we
conclude in Sec. 7 and consider possible future work.

2 Formal Foundations and Program Equivalence

In this section, we briefly describe the language FFL, introduce a reduction big-step
semantics for FFL and discuss the notion of equivalence for FFL programs.

The primary design goal of FFL is the capability to represent both imperative
and MapReduce programs written in IL. To achieve this, we follow the work by
Radoi et al. [21] and use a simply typed lambda calculus extended by the theories of
sums, products, and arrays. Furthermore, the language also contains the programming
primitives usually found in MapReduce frameworks. We also want to limit the number
of primitives included in FFL while still retaining expressiveness. This simplifies
proving general properties of FFL and proving the correctness of rewrite rules. We
accomplish this by building upon the work of Chen et al. [7], who describe how
to reduce the large number of primitives provided by MapReduce frameworks to a
smaller core.

Two new primitives iter and fold were added to translate imperative loops directly.
Compared to transforming imperative programs into a recursive form, this allows a
translation closer to the original program formulation. The fold operator is used to
translate bounded for-each iterator loops into FFL. The evaluation of the expression
fold f v0 xs starts with the initial loop state v0 and iterates over each value of the
array xs updating the loop state by applying f . General while loops are translated



6 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

using the iter function. iter f v0 is evaluated by repeatedly applying f to the loop
state (which is initially v0) until f returns unit to indicate termination. Program
terms incorporating iter need not evaluate to a value since the construct allows
formulating non-terminating programs.

The big-step operational reduction semantics [16] of FFL is defined as a binary
relation ⇒bs . Note that, since FFL is based on lambda calculus, programs in FFL
as well as values are FFL expressions. The semantics predicate is thus a partial,
functional relation on FFL-terms.

Definition 1. An FFL term t evaluates to an FFL term v if t ⇒bs v holds. A
term t is called stuck if there exists no v such that t ⇒bs v. Terms that evaluate to
themselves are called values.

A formal definition of the syntax and semantics of FFL can be found in [2]. The
evaluation of a program t in an input state (i.e., for an argument tuple a) resulting
in a output state v (a result tuple) can be formalized as the reduction evaluation of
the application of the program to the arguments: 〈t, a〉 ⇓bs v := app(t , a)⇒bs v .

The semantics of FFL is deterministic. This may seem odd because most MapRe-
duce frameworks take considerable leeway from fully deterministic execution in the
name of performance. For example, some operations may be evaluated in a non-
deterministic order depending on how fast data arrives over the network leading to
non-determinism if these operations are not commutative and associative. However,
non-determinism in MapReduce algorithms is usually not desired, and the problem
of checking whether or not a MapReduce algorithm is deterministic is orthogonal
to proving that it is equivalent to an imperative algorithm. We thus consider a
deterministic language model to be suitable for our purposes and defer checking of
determinism to other tools such as those developed by Chen et al. [8,9].

Since FFL includes the potential for run-time errors such as out-of-bound array
accesses but does not include an explicit error term, the step-relation ⇒bs is not
total. The absence of an explicit error term also has the consequence that one cannot
distinguish between non-termination and runtime errors according to the definition
of program equivalence in Definition 2.

The introduction of the semantics relation allows us to define a notion of program
equivalence for FFL terms.

Definition 2. Two well-typed FFL terms s and t are called equivalent if they (a) are
of the same type τ and (b) evaluate to the same values v. We write s ∼=τ t in this
case. Using ` t : τ to denote that the closed FFL term t has type τ , this definition
can be formalized as follows:

s ∼=τ t := ` s : τ ∧ ` t : τ ∧
∀v . (s ⇒bs v)⇔ (t ⇒bs v)

(1)

This definition of program equivalence also enforces mutual termination [11], i.e.,
the property that equivalent programs either both terminate or both diverge. In
particular, two non-terminating terms of the same type are equivalent.

Example 1. Figure 3 shows two transformations of the function SumArrays (see
Fig. 2) into FFL. In Fig. 3 (a), the loop is translated using fold, and in Fig. 3 (b)



Equivalence of Imperative and MapReduce Algorithms 7

fold(λsum. λi.
write(sum, i, xs[i] + ys[i]),

replicate(n, 0),
range(0, n))

snd(iter(λ(i, sum).
if i < n
then inr (i+ 1,

write(sum, i, xs[i] + ys[i]))
else inl unit,

(0, replicate(n, 0))))

(a) (b)

Fig. 3: Translation of function SumArrays (see Fig. 2) into FFL using fold and iter

(where inl and inr denote the left and right injection into a sumtype).

using the more general iter. In both cases, it can be observed that the local variables
i and sum become λ-bound variables of the translation of the enclosing block, in
this case the loop body.

The first translation has the initial state replicate(n, 0), an array of length n with
all values set to 0, and it iterates over the indices in the array ([0; 1; . . . ;n − 1]),
updating the array sum in each iteration using the write function of the McCarthy
theory of arrays.

The translation in Fig. 3 (b) starts from the initial loop state (0, replicate(n, 0)).
In each iteration, an if -clause is used to check if the loop condition still evaluates
to true. If that is the case, the index is incremented and sum is updated, otherwise
the program exits the loop as indicated by inl unit and evaluates to the current loop
state.

3 Program Transformations

With the reduction of imperative and MapReduce implementations to the com-
mon language FFL, we are able to prove equivalence between two programs by
constructing a chain of single, isolated program transformations. We categorize
the transformations by their dependence on the surrounding context. A context-
independent transformation is an uniform transformation as it replaces only one
isolated subterm in the program by an equivalent term. This replacement has no
effects on other parts of the program and has only conditions on the replaced subterm.
In contrast, context-dependent transformations do not replace individual terms but
require many small changes throughout different parts of the programs.

For example, consider the IL programs in Fig. 2. In the left IL program, the
loop iterates over two separate arrays xs and ys of the same length. In the right
IL program, the loop iterates over a single array that represents the zipped version
of xs and ys. Inspection of the FFL versions from Fig. 3 shows that a program
transformation unifying both programs requires two changes to individual subterms:
(a) the initial loop state, and (b) adaption of the read and write references.

We use two complementary techniques for proving the correctness of a trans-
formation depending on whether it is context-independent or context-dependent:
The equivalence of programs related by context-independent transformations is
proven using rewrite rules (Sect. 3.1) while the equivalence of programs related by
context-dependent transformation is shown using coupling predicates (Sect. 3.2).



8 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

fold(λacc. λx. f(acc, g(x)),
i,
xs)

!
fold(λacc. λy. f(acc, y),

i,
map(g, xs))

Side conditions: acc 6∈ FV (f), x 6∈ FV (f), y 6∈ FV (f), x 6∈ FV (g), acc 6∈ FV (g)

Fig. 4: Rewrite rule for separating a loop body into two functions f and g such that
the evaluation of g is independent of all other iterations and can be computed in
parallel. FV (g) is the set of free, unbound variables in the term g.

3.1 Handling Context-Independent Transformations Using Rewrite
Rules

Intermediate programs are mostly linked by uniform context-independent trans-
formations on isolated subterms. Instead of performing and proving these local
transformations manually, we can capture them into generalized rewrite rules. That
equivalence is preserved when these generalized rewrite rules are applied, needs to
be proven only once. By maintaining and using a collection of local transformations
that have been proven correct, we can lower proof complexity and later increase the
computer assistance and automation.

A rewrite rule describes a bidirectional program transformation that allows the
replacement of a subterm within a program. It is composed of two patterns and a
set of side conditions which are sufficient for the transformation to preserve program
equivalence. A pattern is an FFL term containing metavariables.

To apply a rewrite rule on a program, we have to identify a subterm of the
program that (a) matches the first pattern and (b) satisfies the side conditions. The
transformed program is obtained by the instantiation of the other pattern with the
matched metavariables. Since the sets of bound metavariables in the two patterns
can be different, some metavariables may not be uniquely instantiated, leading to a
degree of freedom in the translation. We will discuss the practical implications of
this in Sect. 4.3.

While there is no hard limit on the complexity of the side conditions that can be
part of rewrite rules, it is desirable to use side conditions that are simple and easy to
check. This prevents the application of rewrite rules from producing auxiliary complex
proofs due to complex side conditions. In our experiments we only encountered the
following three different kinds of side conditions:

1. Two arrays xs and ys have the same length, i.e., length(xs) ∼=int length(ys).
2. t is not stuck.
3. x 6∈ FV (t) where FV (t) is the set of free variables in the term t.

Sect. 4.3 discusses how these side conditions could be discharged automatically.
To illustrate the kind of rewrite rules used in the equivalence proofs described

in this paper, we present two of the most commonly used rewrite rules in detail.
To demonstrate the feasibility of formal correctness proofs for rewrite rules, we
have proven the correctness of most (10 out of 13 rules) of our rules in Coq . A full
listing of all FFL rewrite rules can be found in the long version of this paper [2]. The
first rule, shown in Fig. 4, decomposes the loop body of a fold expression into two
separate functions f and g, where g is independent of other iterations. Thus, g can



Equivalence of Imperative and MapReduce Algorithms 9

fold(λacc. λ(i, x).
write(acc, i, f(i, x, acc[i])),
ys,
xs)

!

fold(λacc. λ(i, v).write(acc, i, v),
ys,
map(λ(i, vs).

(i, fold(λx′. λx. f(i, x, x′), ys[i], vs)),
group(xs)))

Side conditions: acc 6∈ FV (f), x 6∈ FV (f), x ′ 6∈ FV (f), i 6∈ FV (f), vs 6∈ FV (f)

Fig. 5: Rewrite rule for grouping loop iterations which access the same index of an
array.

C(i0, i′0)

∧ (∀i, i′, j. C(i , i ′) =⇒ C(f(i, xs[j]), f ′(i′, xs′[j])))

=⇒ C(fold(f, i0, xs), fold(f ′, i′0, xs
′))

Fig. 6: Coupling invariant rule for fold for a coupling predicate C. Free variables
are implicitly universally quantified.

be computed in parallel using a map operation. This rewrite rule illustrates that
rewrite rules used in proofs can often also function as guidelines for parallelizing
and distributing imperative algorithms.

The second rule, shown in Fig. 5, is similar to the previous rule in that it tries
to separate independent parts of the loop body so that they can be executed in
parallel. However, in this case, the part that is extracted is only independent of other
iterations that access different indices. The group operation can be used to group
all accesses to the same index. Using map one can then calculate the new values for
each index in xs in parallel and update ys with those new values.

3.2 Handling Context-Dependent Transformations Using Coupling
Predicates

While context-independent transformations are nicely handled using rewrite rules,
context-dependent transformations can usually not be captured by patterns and
simple side conditions. Coupling predicates provide a flexible and effective solution
to proving the correctness of context-dependent transformations – at the cost of
requiring more user interactions than rewrite rules. The use of coupling predicates
is based on the observation that analyzing two loops in lockstep and proving that a
relational property, i.e., the coupling predicate, holds after each iteration is sufficient
to prove that it holds after the execution of both loops. Fig. 6 shows the corresponding
coupling invariant rule for fold. For the purpose of presentation, we ignore the
distinction between syntactic terms and the values to which they evaluate. Besides
this rule for fold, there is a similar rule for iter.

One compelling example for using coupling predicates is given in the beginning
of this section. The presented program transformation is provable equivalent with
the coupling invariant rule from Fig. 2. If these arrays are part of the accumulator
in a fold or iter, capturing this transformation by a rule patterns is not possible:
While the transformation of the initial accumulator value can be captured using
patterns, this is not sufficient since all references to the accumulator in the loop



10 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

body also need to be updated. These references can be nested arbitrarily deep inside
the loop body and there can be arbitrarily many references. This makes it impossible
to capture them by a single pattern which can only bind a fixed number of variables
and thereby only make a fixed number of transformations. To make matters worse,
it is not even sufficient to just transform the loop itself since the loops are not
equivalent: the right loop evaluates to two separate arrays while the other evaluates
to an array of tuples. It is thus necessary to prove the equivalence of the enclosing
terms under the assumption that the loop in one program evaluates to a tuple of
two arrays pair(xs, ys) while the other loop evaluates to zip(xs, ys). This assumption
can then be proven correct using the coupling predicate stating that this holds after
each iteration.

Another commonly found transformation is the removal of unused elements
from a tuple representing the loop accumulator. As it was the case for the previous
transformation, the loops themselves are not equivalent and it is necessary to prove
enclosing terms equivalent using the assumption that the values present in both loop
accumulators are equivalent. As before, this assumption can be proven correct using
a coupling predicate which states that this holds after each iteration.

4 Transformation Application Strategy

Splitting the translation into a chain of intermediate programs and translating these
into FFL leaves us with the problem of proving neighboring programs equivalent.
In order to reduce the amount of user interaction required to conduct these basic
equivalence proofs, we define an iterative heuristic search strategy to identify the
locations within the programs on which the program transformations described in
Sect. 3 will be applied. Alg. 1 depicts this search strategy as pseudocode. First, we
use the structural difference operation (Diff, see Sect. 4.1) to identify subterms
P ′ and Q′ whose equivalence implies the equivalence of the full programs P and
Q. Second, we start an iterative bottom-up process in which we try to prove the
equivalence of the subterms P ′, Q′ and their enclosing terms (ProveEquivalent),
until we reached the top level programs P and Q. During the bottom-up process,
the subterms P ′ and Q′ may be found to be equivalent only in some cases but not in
others. But that is fine as long as we are able to prove that the cases in which they
are non-equivalent are not relevant in the context in which P ′ and Q′ occur. Thus,
we extract the premises under which P ′ and Q′ are equivalent, and bubble them
up to the equivalence proof for the parent terms (AddMissingPremises, Widen, see
Sec. 4.2) If we arrive at the top-level terms and cannot prove those equivalent, the
proof fails.

4.1 Using Congruence Rules to Simplify Proofs

While the difference between neighboring programs in the chain – which are more
closely related – tends to be small, the size of these programs can still be large.
This complicates interactive proofs for the user, and can also slow down automated
proofs. To reduce the complexity, we prove the equivalence of subterms and then use
congruence rules to derive the equivalence of the full programs. A concrete example
of a congruence rule is shown in Fig. 7a.



Equivalence of Imperative and MapReduce Algorithms 11

input :Two FFL terms P and Q
output : true if P and Q could be proven equivalent
Premises ← {};
(P ′,Q′) ← Diff(P ,Q);
repeat

equivalent? ← ProveEquivalent(P ′,Q′,Premises);
if equivalent? then

return true;
else

Premises ← AddMissingPremises(Premises);
(P ′, Q′)← Widen(P ′,Q′);

end

until P ′ = P and Q′ = Q;
return false;

Alg 1. Strategy for individual equivalence proofs between a pair of FFL programs.

xs ∼=[α] ys i ∼=Int j

read(xs, i) ∼=α read(ys, i)

Fig. 7a: Congruence rule for read

Diff(fold(λ(x, y). x+ y, 0, xs),
fold(λ(x, y). y + x, 0, xs))

= (λ(x, y). x+ y, λ(x, y). y + x)

Fig. 7b: Example of applying Diff

We have found that a simple structural comparison (Diff in Alg. 1) is well suited
for finding smaller subterms whose equivalence implies the equivalence of the full
programs. Diff computes the smallest two subterms such that replacing them by
placeholders results in identical terms. An example of Diff can be seen in Fig. 7b.

4.2 Missing Premises and Widening

During the iterative bottom-up process in Alg. 1, P ′ and Q′ may turn out to be
non-equivalent in some cases. The strategy then tries to extract required contex-
tual conditions (premises) that are sufficient to ensure equivalence of P ′ and Q′

(AddMissingPremises). In the next step, we try to prove the equivalence of en-
closing terms (Widen), which contain P ′ and Q′ as subterms. Additionally, in the
widening-step, we take care of the generated premises. These have either to be shown
to always hold in the context of Widen(P ′, Q′) or in the context of further widening.

These two steps – premise extraction and widening – are commonly required to
prove the equivalence of loop bodies. The example in Fig. 8 illustrates this. Applying
Diff instantiates P ′ and Q′ with the two loop bodies, as they are the topmost
non-equal subterms. A coupling invariant implying that the two loops are started in
equivalent states is not sufficient to ensure equivalent loop states after execution
since zip is only defined for arrays of the same length. Thus, the coupling invariant
needs to include the premise that xs and ys are of equal length.

In some cases, additional premises sufficient for proving equivalence can be found
by working backward from missing assumptions in failed proofs. In the example
above, proving that the program states are equivalent at the end of each loop
iteration assuming that they are equivalent at the beginning will fail due to the



12 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

missing premise that xs and ys have the same length. We thus add this premise
and try to prove the loop bodies equivalent using that premise. If that is successful,
we widen the context to enclosing terms. In the outer context, we attempt to prove
that the additional premises are satisfied and derive the equivalence of the full loops
based on proved coupling invariant.

4.3 Potential for Automation of Proofs using Rewrite Rules

Since equivalence proofs using rewrite rules are particularly common but also quite
repetitive, this section is devoted to their potential for proof automation. A graphical
overview of the individual steps can be found in Fig. 9.

1. We perform an approximate matching procedure to generate candidate programs
which match the patterns in the rewrite rule.

2. We attempt to prove that these candidates are equivalent to the input programs
or otherwise we reject them.

3. We prove that the side conditions hold for these candidates.

By the correctness of the rewrite rule, the candidates are equivalent.

4.3.1 Matching of Rewrite Rules While automatic rewriting systems have
been used in the related context of automatically translating imperative algorithms
to MapReduce algorithms [21], the specific ways in which rewrite rules are used in
our approach brings new challenges as well as simplifications.

The challenge lies in the fact that the intermediate programs often do not match
the patterns found in rewrite rules directly. There are two typical solutions: normal
forms and generalization of patterns. Both are not applicable here. First, there is no
suitable normal form of FFL programs. Additionally, both programs are defined by
the user, so we cannot assume a specific program structure. Second, the formulation
of generalized rewrite rules for matching the large variety of user-defined programs
is difficult to obtain and also their correctness proofs are harder to obtain.

The benefit of the programs A,A′ (resp. B,B′) being provided by the user is that
this can reduce ambiguities. In particular, the schematic variables in the two patterns
usually overlap to a large degree, but not fully. The matching of the program A
against the corresponding pattern can lead to unassigned metavariables, which we
need to instantiate with correct choices to prove the equivalence. Now, we have the

sum ← 0;
for i← 0 to n− 1 do

sum ← sum + xs[i ];
xs ← F’(xs,ys);

end

sum ← 0;
for i← 0 to n− 1 do

zipped ← zip(xs,ys);
sum ← sum + fst(zipped[i ]);
xs ← F(zipped);

end

Fig. 8: Two potentially equivalent IL programs operating on two separate arrays
(left) and the result of applying zip to these arrays (right). xs, ys are arrays of
length n. F and F’ return arrays of the length of their input.



Equivalence of Imperative and MapReduce Algorithms 13

¬ Generate candidates by
approximate matching

A B

Rewrite RuleA′ B′

­ Prove equivalence ­ Prove equivalence

® Prove sideconditions

Fig. 9: Workflow for equivalence proofs using rewrite rules. The user has to provide
the programs A,A′, B,B′ and also the rewrite rule. The equivalence proofs ® are
computer-aided in Coq .

benefit, that the target program A′ is also defined by the user. So, we can obtain
missing assignments by matching the other pattern against the other program.

To find the intermediate programs which match the patterns in rewrite rules, an
approximate match procedure is used to find assignments for schematic variables in
patterns. The approximate matching is an extension of the classical pattern matching
with the background knowledge and heuristic of easy-to-prove differences. Applying
these assignments to patterns yields candidates for the intermediate program. Once
two candidates that match the patterns in a rewrite rule have been identified, it is
necessary to prove that (a) the candidates are equivalent to the programs used as
the input of the approximate matching procedure, and (b) the side conditions hold
and the equivalence of the candidates follows thereby from the correctness of the
rewrite rule..

While we have only implemented rudimentary partial automation of the equiva-
lence proof construction, analyzing the Coq proofs produced in our experiments has
shown that these proofs can be reduced to the correctness of a small number of simple
transformations. Proving the correctness of these transformations automatically is
feasible and could drastically reduce the need for user interaction.

During our evaluation, one of the most prevalent transformations is call-by-name
beta-reduction or lambda abstraction depending on the direction of the transformation
for proving the equivalence (­ in Fig. 9). Call-by-name beta-reduction refers to the
beta-reduction found in programming languages with lazy semantics, which contrary
to call-by-value beta-reduction, does not evaluate the argument before applying
substitution. Since we are working in a call-by-value setting, call-by-name beta-
reduction does not always produce an equivalent program. However, the resulting
program is equivalent if, for each case where the argument would have been evaluated
in the original program, all occurrences in the new program will also be evaluated.

Most other transformations are special cases of constant-folding, e.g., reducing
expressions such as fst(pair(a, b)) to a. Constant-folding does not produce an equiva-



14 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

lent program in general if the terms that are being folded are inside the body of a
lambda. A sufficient criterion for the resulting program to be equivalent is that the
terms being folded are always evaluated.

4.3.2 Proving Side Conditions In Sect. 3.1 we listed the three different kinds
of side conditions used in our rewrite rules. The first of those, x 6∈ FV (t), is purely
syntactical and can easily be checked automatically. While proving that a term is not
stuck can be difficult in general, in our experiments this could usually be reduced to
the term being a value, which again is a syntactical condition. The third kind of side
condition states that two arrays have the same length. This can usually be proven
recursively by reduction to operations that produce arrays of a specific length, e.g.,

∀n, a, b. length(replicate(n, a)) = length(replicate(n, b)) ,

or to length-preserving operations such as map. Note that it can be necessary to
strengthen loop invariants to carry this fact through a loop, as explained in Sect. 4.2.

5 Evaluation and Case Study

To demonstrate the feasibility of our approach, we have created a toolchain. The user
specifies a sequence of intermediate programs in a simple imperative language. These
programs are then automatically translated into a formalization of the previously
described functional programming language FFL in Coq . In addition to generating
proof obligations, our toolchain reduces these obligations using the mentioned
structural comparison Diff, and it applies congruence rules to reconstruct an
equivalence proof of the full programs.

Using this toolchain, we have proven the equivalence of imperative and MapRe-
duces implementations of the PageRank algorithm [5] and the k-means [20] algorithm
in Coq . An extensive description of the PageRank example including all intermediate
programs can be found in [3]. Fig. 10 shows the imperative and the MapReduce
implementation of PageRank that we have used in our experiments. The MapReduce
implementation of PageRank shown here is deterministic when executed on rational
numbers due to commutativity and associativity of addition. However, the algorithm
is not deterministic when executed using floating point numbers since addition is
not associative in this case. We have not attempted the verification of algorithms
based on floating point numbers in this work.

While we have created the imperative implementations ot the two algorithms
ourselves, the MapReduce versions are very close to the implementations accom-
panying the Thrill [4] framework. This reinforces our claim that FFL is capable of
representing MapReduce algorithms and is thereby suitable for this approach. In
total, the formalization of FFL, the rewrite rules, and proofs of various properties,
encompasses about 8000 lines of Coq code. The equivalence proofs of PageRank and
k-means each require about 3700 lines of Coq proofs. That includes the automatically
generated translation of the chain of equivalent programs (for k-means this chain
consists of 9 programs while for PageRank it consists of 6 programs), which take
up large parts of these proofs. The proofs rely on the rewrite rules which we have
formalized in Coq as well as coupling predicates.



Equivalence of Imperative and MapReduce Algorithms 15

Function PageRank(links, numLinks, n)
begin

ranks ←
Replicate(numLinks, 1

numLinks
);

for i = 1 to n do
ranks’ ← Replicate(numLinks, 0);
for p = 0 to numLinks− 1 do

contrib ← ranks[p]
Length(links[p])

;

foreach q← links[p] do
ranks’[q] ←

ranks’[q] + contrib;

end
end
for p = 0 to numLinks− 1 do

ranks[p] ←
Dampen(ranks’[p], numLinks);

end
end
return ranks;

end

Function PageRank(links, numLinks, n)
begin

ranks ←
Replicate(numLinks, 1

numLinks
);

for i = 1 to n do
outRanks ← Zip(links,ranks);
contribs ←

FlatMap(
λ(ls, r).

Map(λl.(l, r
Length(ls)

), ls),

outRanks);
rankUpdates ←

Reduce(+, 0, contribs);
ranks’ ← Replicate(numLinks, 0);
foreach (l, r)← rankUpdates do

ranks’[l] ← r;
end
ranks ←

Map(λr. Dampen(r, numLinks),
ranks’);

end
return ranks;

end

Fig. 10: Imperative (left) and MapReduce (right) versions of the PageRank algorithm
(the function Replicate(n,v) creates an array of length n with all elements set to v;
and Dampen is an arbitrary function).

6 Related Work

A common approach to relational verification and program equivalence is the use of
product programs [1]. Product programs combine the states of two programs and
interleave their behavior in a single program. RVT [13] proves the equivalence of C
programs by combining them in a product program. By assuming that the program
states are equal after each loop iteration, RVT avoids the need for user-specified or
inferred loop invariants and coupling predicates.

Hawblitzel et al. [15] use a similar technique for handling recursive function calls.
Felsing et al. [12] demonstrate that coupling predicates for proving the equivalence of
two programs can often be inferred automatically. While the structure of imperative
and MapReduce algorithms tends to be quite different, splitting the translation into
intermediate steps yields programs which are often structurally similar. We have
found that in this case, techniques such as coupling predicates arise naturally and
are useful for selected parts of an equivalence proof.

Radoi et al. [21] describe an automatic translation of imperative algorithms
to MapReduce algorithms based on rewrite rules. While the rewrite rules are very
similar to the ones used in our approach, we complement rewrite rules by coupling
predicates. Furthermore, we are able to prove equivalence for algorithms for which
the automatic translation from Radoi et al. is not capable of producing efficient
MapReduce algorithms. The objective of verification imposes different constraints
than the automated translation – in particular, both programs are provided by the
user, so there is less flexibility needed in the formulation of rewrite rules.

Chen et al. [7] and Radoi et al. [21] describe languages and sequential semantics for
MapReduce algorithms. Chen et al. describe an executable sequential specification in



16 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

the Haskell programming language focusing on capturing non-determinism correctly.
Radoi et al. use a language based on a lambda calculus as the common representation
for the previously described translation from imperative to MapReduce algorithms.
While this language closely resembles the language used in our approach, it lacks
support for representing some imperative constructs such as arbitrary while-loops.

Grossman et al. [14] verify the equivalence of a restricted subset of Spark programs
by reducing the problem of checking program equivalence to the validity of formulas
in a decidable fragment of first-order logic. While this approach is fully automatic,
it limits programs to Presburger arithmetic and requires that they are synchronized
in some way.

To the best of our knowledge, we are the first to propose a framework for proving
equivalence of MapReduce and imperative programs.

7 Conclusion

We have presented a new approach for proving the equivalence of imperative and
MapReduce algorithms. This approach relies on splitting the transformation into a
chain of intermediate programs. The individual equivalence proofs are then catego-
rized in context-independent and context-dependent transformations. Equivalence
proofs for context-independent transformations are handled using rewrite rules, while
equivalence proofs for context-dependent transformations are based on coupling
predicates. We have demonstrated the feasibility of end-to-end equivalence proofs
using this approach by applying it two well-known non-trivial algorithms.

While we have hinted at the potential for automating this approach, implementing
automation is left as future work. In particular, it would be interesting to explore
whether existing tools for relational verification using coupling predicates can be used
or if new tools are necessary. Further future work includes extending the approach
presented here to support the full expressiveness provided by languages which are
used to implement imperative and MapReduce algorithms.

References

1. Barthe, G., Crespo, J.M., Kunz, C.: Relational Verification Using Product Programs,
pp. 200–214. Springer Berlin Heidelberg (2011)

2. Beckert, B., Bingmann, T., Kiefer, M., Sanders, P., Ulbrich, M., Weigl, A.: Relational
Equivalence Proofs Between Imperative and MapReduce Algorithms. ArXiv e-prints
(Jan 2018), https://arxiv.org/abs/1801.08766

3. Beckert, B., Bingmann, T., Kiefer, M., Sanders, P., Ulbrich, M., Weigl, A.: Proving
Equivalence Between Imperative and MapReduce Implementations Using Program
Transformations. In: Third Workshop Models for Formal Analysis of Real Systems and
Sixth International Workshop on Verification and Program Transformation. Electronic
Proceedings in Theoretical Computer Science, vol. 268, pp. 185–199. Open Publishing
Association (2018)

4. Bingmann, T., Axtmann, M., Jöbstl, E., Lamm, S., Nguyen, H.C., Noe, A., Schlag, S.,
Stumpp, M., Sturm, T., Sanders, P.: Thrill: High-performance algorithmic distributed
batch data processing with C++. In: IEEE International Conference on Big Data. pp.
172–183. IEEE (Dec 2016), preprint arXiv:1608.05634

https://arxiv.org/abs/1801.08766
https://arxiv.org/abs/1608.05634


Equivalence of Imperative and MapReduce Algorithms 17

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1-7), 107–117 (Apr 1998), http://dx.doi.org/10.

1016/S0169-7552(98)00110-X

6. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R., Weizen-
baum, N.: FlumeJava: Easy, efficient data-parallel pipelines. ACM SIGPLAN Notices
45(6), 363–375 (2010)

7. Chen, Y.F., Hong, C.D., Lengál, O., Mu, S.C., Sinha, N., Wang, B.Y.: An Executable
Sequential Specification for Spark Aggregation (2017), https://arxiv.org/abs/1702.
02439

8. Chen, Y.F., Hong, C.D., Sinha, N., Wang, B.Y.: Commutativity of Reducers, pp.
131–146. Springer (2015)

9. Chen, Y., Song, L., Wu, Z.: The Commutativity Problem of the MapReduce Framework:
A Transducer-based Approach. CoRR abs/1605.01497 (2016), http://arxiv.org/abs/
1605.01497

10. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (Jan 2008)

11. Elenbogen, D., Katz, S., Strichman, O.: Proving mutual termination. Form.
Methods Syst. Des. 47(2), 204–229 (Oct 2015), http://dx.doi.org/10.1007/

s10703-015-0234-3

12. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression
verification. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. pp. 349–360. ASE ’14, ACM, New York, NY, USA
(2014)

13. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th Annual
Design Automation Conference. pp. 466–471. DAC ’09, ACM, New York, NY, USA
(2009)

14. Grossman, S., Cohen, S., Itzhaky, S., Rinetzky, N., Sagiv, M.: Verifying Equivalence of
Spark Programs, pp. 282–300. Springer International Publishing, Cham (2017)

15. Hawblitzel, C., Kawaguchi, M., Lahiri, S., Rebêlo, H.: Mutual summaries: Uni-
fying program comparison techniques. In: Informal proceedings of BOOGIE
2011 workshop (2011), https://www.microsoft.com/en-us/research/publication/
mutual-summaries-unifying-program-comparison-techniques/

16. Kahn, G.: Natural semantics. STACS 87 pp. 22–39 (1987)
17. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler IR

– combining static verification and dynamic analysis. Journal of Automated Reasoning
(Sep 2017)

18. Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verification of pointer
programs by predicate abstraction. Journal on Formal Methods in System Design (Aug
2017)

19. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SymDiff: A language-agnostic
semantic diff tool for imperative programs. In: Proceedings of the 24th International
Conference on Computer Aided Verification. pp. 712–717. CAV’12, Springer-Verlag,
Berlin, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-31424-7_54

20. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28(2), 129–137 (1982), https://doi.org/10.1109/TIT.1982.1056489

21. Radoi, C., Fink, S.J., Rabbah, R., Sridharan, M.: Translating Imperative Code to
MapReduce. SIGPLAN Not. 49(10), 909–927 (Oct 2014)

22. The Coq development team: The Coq proof assistant reference manual. LogiCal Project
(2004), http://coq.inria.fr, version 8.6

23. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. ACM Trans. Program. Lang. Syst.
34(3), 11:1–11:35 (Nov 2012), http://doi.acm.org/10.1145/2362389.2362390

http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
https://arxiv.org/abs/1702.02439
https://arxiv.org/abs/1702.02439
http://arxiv.org/abs/1605.01497
http://arxiv.org/abs/1605.01497
http://dx.doi.org/10.1007/s10703-015-0234-3
http://dx.doi.org/10.1007/s10703-015-0234-3
https://www.microsoft.com/en-us/research/publication/mutual-summaries-unifying-program-comparison-techniques/
https://www.microsoft.com/en-us/research/publication/mutual-summaries-unifying-program-comparison-techniques/
http://dx.doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1109/TIT.1982.1056489
http://coq.inria.fr
http://doi.acm.org/10.1145/2362389.2362390


18 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

24. White, T.: Hadoop: The definitive guide. O’Reilly Media, Inc. (2012)
25. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster

computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing. pp. 10–10. HotCloud’10, USENIX Association, Berkeley,
CA, USA (2010), http://dl.acm.org/citation.cfm?id=1863103.1863113

http://dl.acm.org/citation.cfm?id=1863103.1863113

	Relational Equivalence Proofs Between Imperative and MapReduce Algorithms
	Introduction
	Formal Foundations and Program Equivalence
	Program Transformations
	Handling Context-Independent Transformations Using Rewrite Rules
	Handling Context-Dependent Transformations Using Coupling Predicates

	Transformation Application Strategy
	Using Congruence Rules to Simplify Proofs
	Missing Premises and Widening
	Potential for Automation of Proofs using Rewrite Rules
	Matching of Rewrite Rules
	Proving Side Conditions


	Evaluation and Case Study
	Related Work
	Conclusion


