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Abstract. The suffix array is the key to efficient solutions for myriads of
string processing problems in different applications domains, like data com-
pression, data mining, or Bioinformatics. With the rapid growth of available
data, suffix array construction algorithms had to be adapted to advanced
computational models such as external memory and distributed computing.
In this article, we present five suffix array construction algorithms utilizing
the new algorithmic big data batch processing framework Thrill, which allows
us to process input sizes in orders of magnitude that have not been considered
before.

1 Introduction

Suffix arrays [15,7] are the basis for many text indexes and string algorithms. Suffix
array construction is theoretically linear work, but practical suffix sorting is computa-
tionally intensive and often limits the applicability of advanced text data structures
on large datasets. While fast sequential algorithms exist in the RAM model [17,18],
these are limited by the CPU power and RAM size of a single machine. External
memory algorithms on a single machine are limited by disk [4,3,9], and often have
long running times due to mostly sequential computation or limited I/O bandwidth.

Most suffix array construction algorithms focus only on sequential computation
models. However, while the volume of data is increasing, the speed of individual CPU
cores is not. This leaves us no choice but to consider shared-memory parallelism and
distributed cluster computation to gain considerable speedups in the future.

Most suffix array construction algorithms (SACAs) employ a subset of three basic
suffix sorting principles: prefix doubling, recursion and inducing [20]. The last type,
inducing, is the basis for the fastest sequential suffix array construction algorithms
[17,18], but yields only well to parallelization for small alphabets [13], and does not
appear to be a promising approach for distributed environments. Recently, a fast
distributed prefix doubling implementation using MPI has been presented [6]. While
they report high speeds for very small inputs, we could not successfully run their
implementation on large inputs. Furthermore, using hundreds of high performance
machines for small inputs is not dollar-cost-efficient.

We propose to use the big data framework Thrill, which supports distributed
external memory algorithms for suffix sorting of large inputs.
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After giving a short introduction to Thrill in Section 1.2, we provide a detailed
description of our SACA implementations in Section 2. Section 2.1 considers mul-
tiple variants of prefix doubling algorithms, and Section 2.2 discusses the recursive
difference cover algorithms DC3 and DC7.

1.1 Related Work

There exists numerous work on sequential SACAs, see [20,5] for two overview articles.
Research in this area is still active, as just this year another theoretically optimal
SACA has been presented that combines ideas used in prefix doubling and induc-
ing [1]. Kärkkäinen et al. [11,10] presented a linear time SACA, the so called DC3
algorithm, that works well in multiple advanced models of computation such as ex-
ternal memory and also parallel and distributed environments. Kulla and Sanders
showed the scalability of the DC3 algorithm in a distributed environment [12]. More
recently, Flick and Aluru presented an implementation of a prefix doubling algorithm
in MPI that can also compute the longest common prefix array [6]. SACAs have also
been considered in external memory, where in theory the DC3 algorithm [11] is opti-
mal. Dementiev et al. [4] compared multiple implementations of prefix doubling and
DC3 for external memory in practice. Lately, Kärkkäinen et al. [9,8] presented two
differente external memory SACAs.

Related to SACAs are construction algorithms for the suffix tree and the Burrows-
Wheeler transform (BWT), which are often used in Bioinformatics. In this domain
one can, however, make special assumptions such as that the input text is fairly
random (like DNA), or that one wishes to compress multiple very similar texts (like
multiple genome sequences of the same species). These practical assumptions yield
suffix sorting implementations tailored to their applications, like straight-forward
parallel radix sort [16,22] or merging of multiple BWTs generated in parallel [21]. On
general text these implementations, however, have super-linear theoretical running
time.

1.2 A Short Introduction into Thrill

We implemented five suffix array construction algorithms using the distributed big
data batch computation framework Thrill [2]. Thrill works with distributed immutable

arrays (DIAs) storing tuples. Items in DIAs cannot be accessed directly, instead Thrill
provides a rich set of DIA operations which can be used to transform DIAs (we use
and describe only a subset of the operations Thrill provides). Each DIA operation
can be instantiated with appropriate user-defined functions for constructing complex
algorithms.

Filter(f) takes a DIA〈A〉 X and a function f : A → bool, and returns the DIA〈A〉
containing [ x ∈ X | f(x) ] within which the order of items is maintained.

Map(f) applies the function f : A → B to each item in the input DIA〈A〉 X , and
returns a DIA〈B〉 Y with Y [i] = f(X [i]) for all i = 0, . . . , |X | − 1.
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Windowk(w) and FlatWindowk(w′) takes an input DIA〈A〉 X and a window
function w : N0 × Ak → B. The operation scans over X with a window of size k
and applies w once to each set of k consecutive items from X and their index in
X . The final k − 1 indexes with less than k consecutive items are delivered to w
as partial windows padded with sentinel values. The result of all invocations of
w is returned as a DIA〈B〉 containing |X | items in the order.
FlatWindow is a variant of Window which takes a input DIA〈A〉 X and a window
function w′ : N0 ×Ak → list(B). The only difference compared to Window is, that
w′ can emit zero or more items that are concatenated in the resulting DIA〈B〉 in
the order they are emitted.3

PrefixSum(s) Given an input DIA〈A〉 X and an associative operation s : A×A → A
(by default s = +), PrefixSum returns a DIA〈A〉 Y such that Y [0] = X [0] and
Y [i] = s(Y [i − 1], X [i]) for all i = 1, . . . , |X | − 1.

Sort(c) sorts an input DIA〈A〉 X with respect to a less-comparison function c : A ×
A → bool. If Sort is called without a comparison function, we assume the tuples
are compared component-wise with the first component being most significant,
the second component the second most significant, and so on.

Merge(X1, . . . , Xn, c) Given a set of sorted DIA〈A〉s X1, . . . , Xn and a less-com-
parison function c : A × A → bool, Merge returns DIA〈A〉 Y that contains all
tuples of X1, . . . , Xn and is sorted with respect to c. If Merge is called without a
comparison function we compare the tuples component-wise (see Sort).

Union(X1, . . . , Xn) Given a set of DIA〈A〉s X1, . . . , Xn, Union returns DIA〈A〉 Y =
⋃n

i=1 Xi containing all items of the input in an arbitrary order.
Zip(X1, . . . , Xn, f) Given a set of DIAs X1, . . . , Xn of type A1, . . . , An of equal size

(|X1| = · · · = |Xn|) and a function f : A1 × · · · × An → B, Zip returns DIA〈B〉 Y
with Y [i] = f(X1[i], . . . , Xn[i]) for all i = 0, . . . , |X1| − 1.

ZipWithIndex(f) Given an input DIA〈A〉 X and a function f : (N0, A) → B,
ZipWithIndex returns DIA〈B〉 Y with Y [i] = f(i, X [i]) for all i = 0, . . . , |X | − 1

Max(c) Given an input DIA〈A〉 X , Max returns the maximum item m = maxc X
with respect to a less-comparison function c : A×A → bool. By default (if Max is
called without a comparison function) the tuples are compared component-wise
(see Sort).

Size() Given an input DIA〈A〉 X , Size returns the number of items in X , i.e., |X |.

Thrill applies chains of functions (method chaining) to a DIA, e.g., if we have a
DIA〈N0〉 N = {0, 1, 2, . . . , 9} and want to compute the prefix sum of all odd elements,
then we write N.Filter(a 7→ (a mod 2 = 1).PrefixSum(). Using chaining, the oper-
ations form a data-flow style graph of DIA operations. Drawings of this graph help
to give a visual impression of the dependencies between the operations. As the data-
flow drawings in this paper are generated from our actual Thrill implementation, they
contain some additional nodes. These are only needed for performance (Cache) and
due to the way Thrill code is chained (Collapse).

3 We say the items are emitted, as in other DIA operations more than one item can be
created per call of the function w to the output DIA〈B〉, while return exits the function.
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2 Scalable Suffix Array Construction Algorithms

In this section, we describe the suffix array construction algorithms that we have
implemented in Thrill. First we describe algorithms based on prefix doubling, and
then we present two implementations based on recursion. SACAs based on inducing
do not appear to be a promising approach in a distributed environment.

Given is a text T of length |T | = n over an alphabet Σ. We call the substring
T [i, n) the i-th suffix of T . The suffix array (SA) for T is a permutation of [0, n) such
that T [SA[i], n) ≤lex T [SA[j], n) for all 0 ≤ i ≤ j < n. The inverse permutation of SA
is called the inverse suffix array (ISA) and the lexicographic rank of the i-th suffix
is ISA[i]. While the ranks of all suffixes are distinct, we will often use the notion
of a lexicographic name. Lexicographic names are representatives of suffixes which
need not be distinct but do respect the lexicographic ordering, i.e., ni and nj are
lexicographic names of two suffixes T [i, n) < T [j, n) iff ni ≤ nj .

2.1 Prefix Doubling Algorithms

The goal of a prefix doubling algorithm is to give each suffix of T a lexicographic
name such that the name corresponds to the rank of the suffix in the (partial) SA. The
names are computed using prefixes of length 2k of the suffixes for k = 1, . . . , ⌈log2 |T |⌉.
During each step, we double the length of these prefixes (hence the name of this type
of algorithm). We can compute the name for the prefix T [i, i + 2k) using the already
computed names of the prefixes T [i, i + 2k−1) and T [i + 2k−1, i + 2k).

Algorithm 1 describes the basic structure of the prefix doubling algorithms pre-
sented in this section. The corresponding data-flow graph is shown in Figure 1. The
whole algorithm requires one DIA N storing tuples and one DIA S storing triples. Ini-
tially, S contains the triples (i, T [i], T [i + 1]) for all i = 0, . . . , n − 1 where we assume
that T [n] = $, see Line 2. These triples contain a text position and the name pair

for that position, i.e, the two names that are required to compute the new name for
the suffix starting at the text position. Next in Line 4, we sort S with respect to the

Algorithm 1: Generic Prefix Doubling algorithm.

1 function PrefixDoubling(T ∈ DIA〈Σ〉)
2 S := T.Window2((i, [ t0, t1 ]) 7→ (i, t0, t1)) // Create initial triples (i, T [i], T [i + 1]).
3 for k := 1 to ⌈log2 |T |⌉ − 1 do

4 S := S.Sort((i, r0, r1) by (r0, r1)) // Sort triples by name pair.
5 N := S.FlatWindow2((i, [ a, b ]) 7→ CmpName(i, a, b)) // Map to names 0 or i.
6 if N.Filter((i, r) 7→ (r = 0)).Size() = 1 then // If all names distinct, then
7 return N.Map((i, r) 7→ i) // return names as suffix array,

8 N := N.PrefixSum((i, r), (i′, r′) 7→ (i′, max(r, r′)) // else calculate new names
9 S := Generate new name pairs using N // and run next refinement iteration.
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Algorithm 2: Identifications of suffix array intervals.

1 function CmpName(j ∈ N0, (i, r0, r1), (i′, r′

0, r′

1) ∈ N)
2 if j = 0 then

3 emit (i, 0) // First DIA item has no offset.

4 emit

{

(i′, j) if (r0, r1) 6= (r′

0, r′

1), // Add sentinel if rank pairs alter.

(i′, 0) otherwise. // T [i, n) and T [i′, n) get the same new name.

name pair as we know that the names correspond to the ranks of the suffixes. Now
we prepare the computation of the new names using the functions CmpName() that
takes the current position i in S and the items S[i] and S[i + 1] as input and emits a
tuple consisting of a text position and a new name, see Algorithm 2. We know that
the suffixes are sorted with respect to their name pairs. Therefore, we can scan S and
mark every position where the name pair differs from its predecessor. CmpName()
marks these non-unique names pairs by giving them the name 0. All unique names
pairs get a name equal to their current position in S. If there is only one suffix with
name 0 we know that all names differ and that we have finished the computation, see
Line 6. Otherwise, we can use a the DIA operation PrefixSum() to set the name of
the tuple to the largest preceding name, i.e., the the new name which is unique if the
name was not 0 and the preceeding name is not 0, see Line 8. Now each suffix has
a new, more refined name. The next step (see Line 9) is to identify the ranks of the
suffixes required for the next doubling step. During the k-th doubling step, we fill S
with one triple for each index i = 0, . . . , |T | − 1 that contains the current name of the
suffix at position i and the current name of the suffix at position i+2k−1. This is also
the step, where the prefix doubling algorithms presented here differ. Next, we show
two different approaches to compute the name pairs for the next refining iteration.

Prefix Doubling using Sorting. In the seminal suffix array paper by Manber and
Myers [15], the presented SACA was a prefix doubling algorithm using sorting. This
idea was refined by Dementiev et al. [4] who presented an external memory SACA
that we adapted to Thrill. The idea is to compute the new name pairs by sorting
the old names with respect to the starting position of the suffix, see Algorithm 3.
We make use of the fact that during each iteration we know for each suffix the suffix
whose current name is required to compute the new, refined name. Hence, we can sort
the tuples containing the starting positions of the suffixes and their current name in
such a way that if there is another name required for a name pair, then it is the name
of the succeeding tuple, see Line 2. To do so, we use the following less-comparator
<k

op : (N0,N0) × (N0,N0) → bool (see Equation 1) in Algorithm 3:

(i, r) <k
op (i′, r′) =

{

i div 2k < i′ div 2k if i ≡ i′ (mod 2k) ,

i mod 2k < i′ mod 2k otherwise.
(1)
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Algorithm 3: Prefix Doubling using sorting.

1 function PrefixDoublingSorting(k ∈ N0)

2 N := N.Sort(<k
op) // Sort such that names required for renaming are consecutive.

3 S := N.Window2

(

(j, [ (i, r0, r1), (i′, r′

0, r′

1) ]) 7→

{

(i, r0, r′

0) if i + 2k = i′ ,

(i, r0, 0) otherwise.

)

Example 4: Example of prefix doubling using sorting in Thrill.

1 T = [ b, d, a, c, b, d, a, c, b ]
2 S = [ (0, d, b), (1, b, a), (2, a, c), (3, c, b), (4, b, d), (5, d, a), (6, a, c), (7, c, b), (8, b, $) ] // 1.2
3 k = 1 // 1.3
4 S = [ (2, a, c), (6, a, c), (8, b, $), (0, b, d), (4, b, d), (3, c, b), (7, c, b), (1, d, a), (5, d, a) ] // 1.4
5 N = [ (2, 0), (6, 0), (8, 2), (0, 3), (4, 0), (3, 5), (7, 0), (1, 7), (5, 0) ] // 1.5
6 4 items with rank 0 // 1.6
7 N = [ (2, 0), (6, 0), (8, 2), (0, 3), (4, 3), (3, 5), (7, 5), (1, 7), (5, 7) ] // 1.8
8 N = [ (0, 3), (2, 0), (4, 3), (6, 0), (8, 2), (1, 7), (3, 5), (5, 7), (7, 5) ] // 3.2
9 S = [ (0, 3, 0), (2, 0, 3), (4, 3, 0), (6, 0, 2), (8, 2, 0), (1, 7, 5), (3, 5, 7), (5, 7, 5), (7, 5, 0) ] // 3.3

10 k = 2 // 1.3
11 S = [ (6, 0, 2), (2, 0, 3), (8, 2, 0), (0, 3, 0), (4, 3, 0), (7, 5, 0), (3, 5, 7), (1, 7, 5), (5, 7, 5) ] // 1.4
12 N = [ (6, 0), (2, 1), (8, 2), (0, 3), (4, 0), (7, 5), (3, 6), (1, 7), (5, 0) ] // 1.5
13 2 items with rank 0 // 1.6
14 N = [ (6, 0), (2, 1), (8, 2), (0, 3), (4, 3), (7, 5), (3, 6), (1, 7), (5, 7) ] // 1.8
15 N = [ (0, 3), (4, 3), (8, 2), (1, 7), (5, 7), (2, 1), (6, 0), (3, 6), (7, 5) ] // 3.2
16 S = [ (0, 3, 3), (4, 3, 2), (8, 2, 0), (1, 7, 7), (5, 7, 0), (2, 1, 0), (6, 0, 0), (3, 6, 5), (7, 5, 0) ] // 3.3
17 k = 3 // 1.3
18 S = [ (6, 0, 0), (2, 1, 0), (8, 2, 0), (4, 3, 2), (0, 3, 3), (7, 5, 0), (3, 6, 5), (5, 7, 0), (1, 7, 7) ] // 1.4
19 N = [ (6, 0), (2, 1), (8, 2), (4, 3), (0, 4), (7, 5), (3, 6), (5, 7), (1, 8) ] // 1.5
20 1 item with rank 0 // 1.6
21 Result: [ 6, 2, 8, 4, 0, 7, 3, 5, 1 ] // 1.7

After sorting using the <k
op-comparator, we need to ensure that two consecutive

names are the ones required to compute the new name, since the required name may
not exist due to the length of the text. This occurs during the k-th iteration for each
suffix beginning at a text position greater than n−2k. In this case we use the sentinel
name 0 which compares smaller than any valid name, see Line 3. In both cases, we
return one triple for each position, consisting of a text position, the current name of
the suffix beginning at that position and the name of the suffix 2k positions to the
right (if it exists and 0 otherwise).

Now we give an example of prefix doubling using sorting in Thrill, see Example 4.
We compute the suffix array of the text T = bdacbdacb. The comment at the end of
each line refers to the line of code responsible for the change from the previous line
where x.y denotes line y in Algorithm x.
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T

S := T.Window2

S := S.Sort

N := S.FlatWindow2

N.Filter

Size

N := N.PrefixSum

N := N.Sort

S := N.Window2

S := S.Sort

N := S.FlatWindow2

N.Filter

Size

N.Map

SAT

Fig. 1. DIA data-flow graph of two iterations of prefix doubling with sorting.

Prefix Doubling using the Inverse Suffix Array. During the k-th doubling step,
we compute a name for each suffix and hence for each position of the text. Algorithm 5
describes how we obtain the rank of the required suffixes using the inverse suffix array.
This approach has been considered in a distributed environment [6] and is based on
the work of Larsson and Sadakane [14] who proposed to use the inverse suffix for
prefix doubling. If we sort the names based on their position in the text, we get the
partial inverse suffix array (partial, as the inverse suffix array does not necessarily
contain the final position of all suffixes in the SA). Using this partial inverse suffix
array, we can get the current rank of each suffix by its text position. For each position
i, we need the rank of the (i + 2k)-th suffix. To get this rank, we scan over the DIA

with a window of width 2k, i.e., the same as shifting the partial inverse suffix array
by 2k positions and appending 0s until its length is |T | again.
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Algorithm 5: Prefix Doubling using the inverse suffix array.

1 function PrefixDoublingISA(k ∈ N0)
2 N := N.Sort(((i, r) by i) // Compute partial ISA.

3 S := N.Window2k+1

(

(j, [ (i, r), . . . , (i′, r′) ]) 7→

{

(i, r, r′) if j + 2k < |T | ,

(i, r, 0) otherwise.

)

Example 6: Example of prefix doubling using the inverse suffix array in Thrill.

1 T = [ b, d, a, c, b, d, a, c, b ]
2 S = [ (0, b, d), (1, d, a), (2, a, c), (3, c, b), (4, b, d), (5, d, a), (6, a, c), (7, c, b), (8, b, $) ] // 1.2
3 k = 1 // 1.3
4 S = [ (2, a, c), (6, a, c), (8, b, $), (0, b, d), (4, b, d), (3, c, b), (7, c, b), (1, d, a), (5, d, a) ] // 1.4
5 N = [ (2, 0), (6, 0), (8, 2), (0, 3), (4, 0), (3, 5), (7, 0), (1, 7), (5, 0) ] // 1.5
6 4 items with rank 0 // 1.6
7 N = [ (2, 0), (6, 0), (8, 2), (0, 3), (4, 3), (3, 5), (7, 5), (1, 7), (5, 7) ] // 1.8
8 N = [ (0, 3), (1, 7), (2, 0), (3, 5), (4, 3), (5, 7), (6, 0), (7, 5), (8, 2) ] // 5.2
9 S = [ (0, 3, 0), (1, 7, 5), (2, 0, 3), (3, 5, 7), (4, 3, 0), (5, 7, 5), (6, 0, 2), (7, 5, 0), (8, 2, 0) ] // 5.3

10 k = 2 // 1.3
11 S = [ (6, 0, 2), (2, 0, 3), (8, 2, 0), (0, 3, 0), (4, 3, 0), (7, 5, 0), (3, 5, 7), (1, 7, 5), (5, 7, 5) ] // 1.4
12 N = [ (6, 0), (2, 1), (8, 2), (0, 3), (4, 0), (7, 5), (3, 6), (1, 7), (5, 0) ] // 1.5
13 2 items with rank 0 // 1.6
14 N = [ (6, 0), (2, 1), (8, 2), (0, 3), (4, 3), (7, 5), (3, 6), (1, 7), (5, 7) ] // 1.8
15 N = [ (0, 3), (1, 7), (2, 1), (3, 6), (4, 3), (5, 7), (6, 0), (7, 5), (8, 2) ] // 5.2
16 S = [ (0, 3, 3), (1, 7, 7), (2, 1, 0), (3, 6, 5), (4, 3, 2), (5, 7, 0), (6, 0, 0), (7, 5, 0), (8, 2, 0) ] // 5.3
17 k = 3 // 1.3
18 S = [ (6, 0, 0), (2, 1, 0), (8, 2, 0), (4, 3, 2), (0, 3, 3), (7, 5, 0), (3, 6, 5), (5, 7, 0), (1, 7, 7) ] // 1.4
19 N = [ (6, 0), (2, 1), (8, 2), (4, 3), (0, 4), (7, 5), (3, 6), (5, 7), (1, 8) ] // 1.5
20 1 item with rank 0 // 1.6
21 Result: [ 6, 2, 8, 4, 0, 7, 3, 5, 1 ] // 1.7

Again, we give an example of the algorithm for the same text as before, see
Example 6. Also, the comments refer to the algorithm and line responsible for the
change as in the previous example.

Prefix Doubling with Discarding. In the algorithms described above, we always
sort and consider all suffixes (name pairs) for the following renaming. Even though
some of them are already at their correct position, i.e., have a unique name. Now,
we present an algorithm which extends the prefix doubling algorithm using sorting
such that only the following suffixes are sorted: suffixes that do not yet have a unique
name and suffixes that have an unique name but are required to compute a name pair
(for a suffix that does not yet have a unique name). All other suffixes are discarded

and are not considered for the computation anymore. This technique has also been
considered for external memory suffix array construction [4].
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Algorithm 7: Prefix Doubling with Discarding.

1 function PrefixDoublingDiscarding(T ∈ DIA〈Σ〉)
2 S := T.Window2((i, [ t0, t1 ]) 7→ (i, t0, t1)) // Create initial triples (i, T [i], T [i + 1]).
3 S := S.Sort((i, r0, r1) by (r0, r1)) // Sort triples by name pairs.
4 N := S.FlatWindow2((i, [ a, b ]) 7→ CmpName(i, a, b)) // Map names to 0 or i.
5 N := N.PrefixSum(((i, r), (i′, r′)) 7→ (i′, max (r, r′))) // Calculate initial names.
6 for k := 1 to ⌈log2 |T |⌉ do

7 P := N.FlatWindow3((i, [ a, b, c ]) 7→ Unique(a, b, c, i)) // Compute states of items.

8 P := Union(P, U).Sort(<k
op) // Concatenate undiscarded items and sort them.

9 P := P.FlatWindow3((i, [ a, b, c ]) 7→ NPairs(i, a, b, c, k)) // Compute new name
10 D′ := P.Filter((i, r0, r1, s)) 7→ (s = d) // pairs and update state. Then find and
11 D := Union(D, D′).Map((i, r0, r1, s) 7→ (i, a.r0))) // store newly discarded items.
12 U ′ := P.Filter((i, r0, r1, s) 7→ (s = u)) // Separate the already unique items and the
13 U := U ′.Map((i, r0, r1, s) 7→ (i, r0, s)) // items that stil l need to be sorted. Former
14 I ′ := P.Filter((i, r0, r1, s) 7→ (s = n)) // are only needed to compute the name pairs
15 I := I ′.Map((i, r0, r1, s) 7→ (i, r0, r1)) // and stored in U . Latter are stored in I.
16 if I.Size() = 0 then

17 return D.Sort((i, r) by r).Map((i, r) 7→ i) // If all items are unique return SA.

18 M := I.FlatWindow2((i, [ a, b ]) 7→ NameDiscarding(i, a, b)) // Form names that
19 M := M.PrefixSum(((i, r0, r1, r2), (i′, r′

0, r′

1, r′

2)) 7→ (i′, max(r′

0, r′

0), max(r′

1, r′

1), r′

2))
20 N := M.Map((i, r0, r1, r2) 7→ (i, r2 + (r1 − r0))) // comply with the old names.

Initially, Algorithm 7 behaves like the generic prefix doubling algorithm (see Fig-
ure 2 for the data-flow graph). We compute name pairs for consecutive text positions
(line 2) and compute the names for all suffixes the same way we do in the generic algo-
rithm. Next, we add a state to the triples (i, r1, r2), i.e., creating 4-tuples (i, r1, r2, s),
indicating whether a name pair is unique (u) or not unique (n) (see function Unique,
Algorithm 8). All 4-tuples that are unique do not need a new name but they may
still be required to compute the new name of another suffix. Hence we add a third
state, a 4-tuple that is unique gets the state discarded (d) if it is not required for
the computation of a different name. Those tuples can easily be identified by looking
at three consecutive tuples after they have been sorted using the less-comparator
described in Equation 1. Let a = (i, r1, r2, s), b = (i′, r′

1, r′

2, s′) and c = (i′′, r′′

1 , r′′

2 , s′′)
be three continuous tuples with s′′ being unique. If either s or s′ is unique, then c can
be discarded because both a and b will get a unique name pair during this iteration.
Otherwise (if s and s′ are not unique) then c cannot be discarded as a will not get a
unique name pair during this iteration and we require the name of c during the next
iteration to compute the name pair (see Function NPairs, Algorithm 8, Lines 7–18).
While computing the final state we also create the new name pairs required for the
new name if the state is not unique, as otherwise the name is final.

Since we do not consider all tuples during the course of Algorithm 7 we need
to change the renaming based on the name pairs. Up to now, we were able to give

9



Algorithm 8: Prefix Doubling with Discarding (Additional Functions)

1 function Unique(j ∈ N0, (i, r), (i′, r′), (i′′, r′′) ∈ N)
2 if j = 0 then

3 emit

{

(i, r, u) if r 6= r′, // First item is unique

(i, r, n) otherwise. // if its ranks differ from its successor.

4 else if j + 2 = l then

5 emit

{

(i′′, r′′, u) if r′ 6= r′′, // Final item is unique

(i′′, r′′, n) otherwise. // if its ranks differs from its precursor.

6 emit

{

(i′, r′, u) if r 6= r′ and r′ 6= r′′, // An item is

(i′, r′, n) otherwise. // unique if its ranks are unique.

7 function NPairs(j ∈ N0, (i, r, s), (i′, r′, s′), (i′′, r′′, s′′) ∈ P , k ∈ N0)
8 if j = 0 then

9 emit

{

(i, r, 0, d) if s = u, // The first two items can be discarded

(i′, r′, 0, d) if s′ = u. // if they are unique. Emit ≤ 2 items.

10 else if j + 2 = l then

11 if s′ = n then

12 emit

{

(i′, r′, r′′, n) if i′ + 2k = i′′, // If the last two items of the

(i′, r′, 0, n) otherwise. // DIA are undecided, then we need

13 if s′′ = n then

14 emit (i′′, r′′, 0, n) // to fuse the ranks required for renaming.

15 if s = n then

16 emit

{

(i, r, r′, n) if i + 2k = i′, // The ranks for renaming are

(i, r, 0, n) otherwise. // consecutive and fused accordingly.

17 if s′′ = u then

18 emit

{

(i′′, r′′, 0, d) if s = u or s′ = u, // Unique items are dis-

(i′′, r′′, 0, u) otherwise. // carded if uncalled-for in future renaming.

19 function NameDiscarding(j ∈ N0, l ∈ N0, (i, r0, r1), (i′, r′

0, r′

1) ∈ I)
20 if j = 0 then

21 emit (i, 1, 1, r0) // The new names must comply with the old ones.

22 emit







(i′, j + 2, j + 2, r′

0) if r0 6= r′

0 and r1 6= r′

1, // The first rank de-

(i′, 1, j + 2, r′

0) else if r0 = r′

0, // termines the group and new

(i′, 1, 1, r′

0) otherwise . // names are consistent within groups.
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T

S := T.Window2

S := S.Sort

N := S.FlatWindow2

N := N.PrefixSum

P := N.FlatWindow3

P := P.Sort

P.Size P := P.FlatWindow3

D′ := P.Filter

D′ := D′.Map

U ′ = P.Filter

U := U ′.Map

I ′ := P.Filter

I := I ′.Map

I := I.SortCache

I.SizeM := I.FlatWindow2

M := PrefixSum

N := M.Map

P := N.FlatWindow3

P := Union(U, P )

P := P.Sort

P.Size P := P.FlatWindow3

D′ := P.Filter

D′ := D′.Map

U ′ := P.Filter

U := U ′.Map

I ′ := P.Filter

I := I ′.Map

I := I.SortCache

I.SizeD := Union(D, D′)

D.Sort.Map SAT

Fig. 2. DIA data-flow graph of two iterations of prefix doubling with discarding.
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names starting at 0 and continue based on the (preliminary) position in SA. If we
discard tuples this approach is not feasible any more as we need to consider the names
of already discarded tuples. During the k-th iteration, all suffixes that do not have
a unique name form consecutive intervals in SA. Within these intervals all suffixes
that cannot be distinguished by their first 2k characters share the same name. These
names are extended, i.e., increased such that the new name is always at least as great
as the previous name and greater than the rank of the first preceding suffix that
can be distinguished using the first 2k characters of the suffixes (lines 18–20). At the
beginning of the next iteration we add all unique names to the new names and check
if they can be discarded. As soon as all names are unique (line 16) we know that all
names have been discarded and can compute SA by sorting the discarded tuples by
their names (line 17).

Prefix Quadrupling. In the prefix doubling algorithms described above, during the
k-th doubling step, we consider substrings of length 2k. This can be generalized to
substrings of length ak for any a ∈ N0 with a > 1. The prefix doubling algorithms
using sorting are I/O optimal for 5-tuples in external memory and in practice using
4-tuples, i.e., prefix quadrupling has the advantage that less memory is required for
storing the tuples and that the I/O-volume is just 1.5% worse compared to prefix
quintupling [4]. The change within the algorithms can be kept to a minimum as we
just require rank quadruples instead of rank pairs. Also, the comparison and the
computation of the new names have to be adapted accordingly.

2.2 Difference Cover Algorithms – DC3 and DC7, aka skew3 and skew7

In 2003, the DC3 aka skew3 suffix sorting algorithm and its generalization, DCX and
skewX , was proposed by Kärkkäinen, Sanders, and Burkhardt [10,11]. They employ
recursion on a subset of the suffixes to reach linear running time in the sequential
RAM model, which translates to sorting complexity in the external memory and
PRAM models. While the reference implementation by the authors is in the sequential
RAM model, the algorithms were later implemented for external memory [4,23], and
DC3 was implemented for distributed memory using MPI [12].

The DCX algorithms are based on scanning, sorting, and merging, and hence are
asymptotically optimal in many models provided optimal theoretical base algorithms.
As Thrill supplies all of these base algorithms as scalable distributed algorithmic
primitives, implementing DCX is a natural choice.

The key notion of DCX is to recursively calculate the ranks of suffixes in only a
difference cover of the original text. A set D ⊆ N0 is a difference cover for n ∈ N0,
if {(i − j) mod n | i, j ∈ D} = {0, . . . , n − 1}. Examples of difference covers are
D3 = {1, 2} for n = 3, D7 = {0, 1, 3} for n = 7, and D13 = {0, 1, 3, 9} for n = 13.
In general, a difference cover of size O(

√
n) can be calculated for any n in O(

√
n)

time [11].
The broad steps of the DC3 algorithm are the following:
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1. Calculate ranks for all suffixes starting at positions i in the difference cover D3 =
{1, 2}. This is done by sorting the triples (T [i], T [i + 1], T [i + 2]) for i ∈ D3,
calculating lexicographic names, and recursively calling a suffix sorting algorithm
on a reduced string of size 2

3
n if necessary. The result of step 1 are two arrays,

R1 and R2, containing the ranks of suffixes i = 1 mod 3 and i = 2 mod 3.
2. Scan text T , R1, and R2 to generate three arrays: S0, S1, and S2, where array

Sj contains one tuple for each suffix i with i = j mod 3. The arrays store tuples
containing the two next ranks from R1 and R2 and all characters from T up to
the next ranks. This is exactly the information required such that the following
merge step is able to deduce the suffix array.

3. Sort S0, S1, and S2 and merge them using a custom comparison function which
compares the suffixes represented in the tuples using characters and ranks. Only a
constant number of characters and ranks need to be accessed in each comparison.
Output the suffix array using the indices stored in tuples.

The first two steps of the difference cover suffix sorting algorithms can be seen as
preparation for the final merge in Step 3. Step 1 delivers ranks for all suffixes i ∈ D3

in R1 and R2. In Step 2 tuples are created in S0, S1, and S2 which are constructed
from the recursively calculated ranks and characters from the text. The tuples are
designed such that the comparison function can fully determine the final suffix array.
The complete DC3 implementation in Thrill algorithm code is shown as Algorithm 9,
and Example 10 shows the transcript of a run with the text T = dbacbacbd. Figure 4
shows the dataflow graph of DC7 instead of DC3, which is slightly more complex
but shows the algorithmic structure better. In the algorithm code we omitted some
details on padding and sentinels needed for inputs that are not a multiple of the
difference cover size.

Goal of Lines 2–24 is to calculate R1 and R2 (step 1). This is done by performing
the following steps:

1. Scan the text T using a FlatWindow operation and create triples (i, c0, c1, c2) for
all indices i in the difference cover D3 = {1, 2} (lines 2–4).

2. Sort the triples as S, scan S and use a prefix sum to calculate lexicographic names
N (lines 5–11). The lexicographic names are constructed in the prefix sum from
0 and 1 indicators. The value 0 is used if two lexicographic consecutive triples
are equal, which means they are assigned the same lexicographic name; the value
1 increments the name in the prefix sum and assigns the unequal triple a new
name.

3. Check if all lexicographic names are different by comparing the highest lexico-
graphic name against the maximum possible (lines 12–13)

4. If all lexicographic names are different, then IS , which contains the indexes of S,
is already the suffix array of the suffixes in D3 (lines 21–24). Hence, R1 and R2

can be created directly: the suffix array IS only needs to be inverted and split by
mod3. Because Thrill’s Filter operation is performed locally, we interleave the
future R1 and R2 parts using the Sort operation such that the two arrays are
balanced on the distributed system after the Filter.
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Algorithm 9: DC3 Algorithm in Thrill.

1 function DC3(T ∈ DIA〈Σ〉)
2 T3 := T.FlatWindow3((i, [ c0, c1, c2 ]) 7→ MakeTriples(i, c0, c1, c2))
3 with function MakeTriples (i ∈ N0, c0, c1, c2 ∈ Σ)
4 if i 6= 0 mod 3 then emit (i, c0, c1, c2) // Make triples i ∈ D3.

5 S := T3.Sort((i, c0, c1, c2) by (c0, c1, c2)) // Sort triples lexicographically.
6 IS := S.Map((i, c0, c1, c2) 7→ i) // Extract sorted indices.
7 N ′ := S.FlatWindow2((i, [ p0, p1 ]) 7→ CmpTriple(i, p0, p1)) // Compare triples.
8 with function CmpTriple(i ∈ N0, p0 = (c0, c1, c2), p1 = (c′

0, c′

1, c′

2)) // Emit one
9 if i = 0 then emit 0 // sentinel for index 0, and 0 or 1

10 emit (if (c0, c1, c2) = (c′

0, c′

1, c′

2) then 0 else 1) // depending on previous tuple.

11 N := N ′.PrefixSum() // Use prefix sum to calculate names.
12 nsub = ⌈2|T |/3⌉, nmod1 = ⌈|T |/3⌉ // Size of recursive problem and mod 1 part of TR

13 if N.Max() + 1 = nsub then // If duplicate names exist, sort names back to
14 T ′

R := Zip([ IS, N ], (i, n) 7→ (i, n)).Sort((i, n) by (i mod 3, i div 3)) // string order
15 SAR := DC3(T ′

R.Map((i, n) 7→ n)) // as T1 ⊕ T2 and call suffix sorter.
16 I ′

R := SAR.ZipWithIndex((i, r) 7→ (i, r)) // Invert resulting suffix array, but
17 IR := I ′

R.Sort((i, r) by (i mod nmod1, i)) // interleave ISA for better locality
18 R1 := IR.Filter((i, r) 7→ i < nmod1).Map((i, r) 7→ r + 1) // after separating ISA

19 R2 := IR.Filter((i, r) 7→ i ≥ nmod1).Map((i, r) 7→ r + 1) // into R1 and R2.

20 else // Else, if all names/triples are unique, then IS is already the suffix array.
21 R := IS.ZipWithIndex((i, r) 7→ (i, r)) // Invert it to get ISA, but
22 IR := R.Sort((i, r) by (i div 3, i)) // interleave ISA for better locality
23 R1 := IR.Filter((i, r) 7→ i = 1 mod 3).Map((i, r) 7→ r + 1) // after separating it
24 R2 := IR.Filter((i, r) 7→ i = 2 mod 3).Map((i, r) 7→ r + 1) // into R1 and R2.

25 T̂3 := T.FlatWindow3((i, [ c0, c1, c2 ]) 7→ MakeTriples(i, c0, c1, c2))
26 with function MakeTriples (i ∈ N0, c0, c1, c2 ∈ Σ) // Prepare Zip with all
27 if i = 0 mod 3 then emit (c0, c1, c2) // triples i /∈ D3.

28 Z′ := Zip([ T̂3, R1, R2 ], ((c0, c1, c2), r1, r2) 7→ (c0, c1, c2, r1, r2)) // Pull chars and ranks
29 Z := Z′.Window2((i, [ (z1, z2) ]) 7→ (i, z1, z2)) // using Zip from three arrays
30 S′

0 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→ (3i + 0, c0, c1, r1, r2)) // to make
31 S′

1 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→ (3i + 1, c1, r1, r2)) // arrays of
32 S′

2 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→ (3i + 2, c2, r2, c̄0, r̄1))
33 S0 := S′

0.Sort((i, c0, c1, r1, r2) by (c0, r1)) // representatives for each
34 S1 := S′

1.Sort((i, c1, r1, r2) by (r1)) // suffix class.
35 S2 := S′

2.Sort((i, c2, r2, c̄0, r̄1) by (r2))
36 return Merge([ S0, S1, S2 ], CompareDC3).Map((i, . . .) 7→ i) // Merge sorted
37 with function CompareDC3(z1, z2) // representatives to deliver final suffix array.
38 (c0, r1) < (c′

0, r′

1) if z1 = (i, c0, c1, r1, r2) ∈ S0, z2 = (i′, c′

0, c′

1, r′

1, r′

2) ∈ S1,
39 (c0, r1) < (c′

1, r′

2) if z1 = (i, c0, c1, r1, r2) ∈ S0, z2 = (i′, c′

1, r′

1, r′

2) ∈ S1,
40 (c0, c1, r2) < (c′

2, c̄′

0, r̄′

1) if z1 = (i, c0, c1, r1, r2) ∈ S0, z2 = (i′, c′

2, r′

2, c̄′

0, r̄′

1) ∈ S2,
41 (r1) < (r′

1) if z1 = (i, c1, r1, r2) ∈ S1, z2 = (i′, c′

1, r′

1, r′

2) ∈ S1,
42 (r1) < (r′

2) if z1 = (i, c1, r1, r2) ∈ S1, z2 = (i′, c′

2, r′

2, c̄′

0, r̄′

1) ∈ S2,
43 (r2) < (r′

2) if z1 = (i, c2, r2, c̄0, r̄1) ∈ S2, z2 = (i′, c′

2, r′

2, c̄′

0, r̄′

1) ∈ S2,
44 and symmetrically if z1 ∈ Si, z2 ∈ Sj with i > j .
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Example 10: Example of DC3 Algorithm in Thrill.

1 T = [ d, b, a, c, b, a, c, b, d ] // Example text T .
2 T3 = [ (1, b, a, c), (2, a, c, b), (4, b, a, c), (5, a, c, b), (7, b, d, $), (8, d, $, $) ] // Triples i ∈ D3.
3 S = [ (2, a, c, b), (5, a, c, b), (1, b, a, c), (4, b, a, c), (7, b, d, $), (8, d, $, $) ] // Sorted triples.
4 IS = [ 2, 5, 1, 4, 7, 8 ] // Indexes extracted from sorted triples.
5 N ′ = [ 0, 0, 1, 0, 1 ] // 0/1 indicators depending if triples are unequal or equal.
6 N = [ 0, 0, 1, 1, 2, 3 ] // Prefix sum of 0/1 indicators delivers lexicographic names.
7 nsub = 6, nmod1 = 3 // Calculate result size directly.
8 Condition (N.Max() + 1 = 4) 6= (6 = nsub), so follow recursion branch.
9 T ′′

R = [ (2, 0), (5, 0), (1, 1), (4, 1), (7, 2), (8, 3) ] // Zip lexicographic names and their string
10 T ′

R = [ (1, 1), (4, 1), (7, 2), (2, 0), (5, 0), (8, 3) ] // index, and sort them to string order
11 TR = [ 1, 1, 2, 0, 0, 3 ] // to construct the recursive subproblem.
12 SAR = [ 3, 4, 0, 1, 2, 5 ] // Recursively calculate suffix array of TR.
13 I ′

R = [ (0, 3), (1, 4), (2, 0), (3, 1), (4, 2), (5, 5) ] // Add index positions to suffix array
14 IR = [ (0, 2), (3, 0), (1, 3), (4, 1), (2, 4), (5, 5) ] // and sort into interleaved R1 and R2 ranks.
15 R1 = [ 3, 4, 5 ], R2 = [ 1, 2, 6 ] // Filter R1 and R2 from IR.

16 T̂3 = [ (d, b, a), (c, b, a), (c, b, d) ] // Prepare triples i /∈ D3.

17 Z′ = [ (d, b, a, 3, 1), (c, b, a, 4, 2), (c, b, d, 5, 6) ] // Zip T̂3, R1, R2 to make arrays Si.
18 S′

0 = [ (0, d, b, 3, 1), (3, c, b, 4, 2), (6, c, b, 5, 6) ] // Construct (i, c0, c1, r1, r2) ∈ S0,
19 S′

1 = [ (1, b, 3, 1), (4, b, 4, 2), (7, b, 5, 6) ] // (i, c1, r1, r2) ∈ S1, and
20 S′

2 = [ (2, a, 1, c, 4), (5, a, 2, c, 5), (8, d, 6, $, 0) ] // (i, c2, r2, c̄0, r̄1) ∈ S2

21 S0 = [ (3, c, b, 4, 2), (6, c, b, 5, 6), (0, d, b, 3, 1) ] // as representatives of suffixes,
22 S1 = [ (1, 3, b, 1), (4, 4, b, 2), (7, 5, b, 6) ] // sort them among themselves
23 S2 = [ (2, 1, a, c, 4), (5, 2, a, c, 5), (8, 6, d, $, 0) ] // such that merging delivers
24 Result: [ 2, 5, 1, 4, 7, 3, 6, 8, 0 ] // the final suffix array.

5. Otherwise, prepare a recursive subproblem TR to calculate the ranks.
(a) Sort the lexicographic names back into string order such that TR = T1 ⊕ T2

where ⊕ is string concatenation (line 14). T1 represents the complete text T
using the lexicographic names of all triples i = 1 mod 3, and T2 is another
complete copy of T with triples i = 2 mod 3. By replacing the triples with
lexicographic names, the original text is reduced by 2

3
.

(b) Recursively call any suffix sorting algorithm (e.g. DC3) on TR (line 15).
(c) Invert the permutation SAR to gain ranks R1 and R2 of triples of T in D3,

again interleave ISAR such that R1 and R2 are balanced on the workers after
the Filter.

With R1 and R2 from Step 1 (lines 2–24), the objective of Step 2 is to create S0,
S1, and S2 in Lines 25–35. Each suffix i has exactly one representative in the array
Sj where j = i mod 3. Its representative contains the recursively calculated ranks of
the two following suffixes in the difference cover from R1 and R2, and the characters
T [i], T [i + 1], T [i + 2], . . . up to (but excluding) the next known rank.

For DC3 these are R1[ i
3
], R2[ i

3
], T [i], and T [i + 1] for a suffix i = 0 mod 3 in S0.

R1[ i
3
] is the rank of the suffix T [i + 1, n) and R2[ i

3
] is the rank of suffix T [i + 2, n),
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which are both in the difference cover. We write the tuple as (i, c0, c1, r1, r2) where
the indexes are interpreted relative to i mod 3. Each suffix i = 1 mod 3 in S1 stores
R1[ i−1

3
], R2[ i−1

3
], and T [i], and we write the tuples as (i, c1, r1, r2) where the indexes

again are relative to i mod 3. And lastly, each suffix i = 2 mod 3 in S2 stores R1[ i−2
3

+

1], R2[ i−2
3

], T [i], and T [i + 1], because R1[ i−2
3

+ 1] is the rank of suffix T [i + 2, n).

In the Thrill algorithm code we construct the tuples by zipping R1, R2, and triple
groups from T together (line 25–29). The Zip Z ′ (line 28) delivers (c0, c1, c2, r1, r2)
for each index i = 0 mod 3. To construct the tuples in Si two adjacent tuples need
to be used because S2’s element are taken from the next tuple. This can be done
in Thrill using a Window operation of size 2. Thus to construct S0, S1, and S2, we
take (c0, c1, c2, r1, r2) for each index i = 0 mod 3 and (c̄0, c̄1, c̄2, r̄1, r̄2) for the next
index i mod 3 + 3, and output (3i + 0, c0, c1, r1, r2) for S0, (3i + 1, c0, c1, r1, c2, r2)
for S1, and (3i + 2, c2, r2, c̄0, r̄1) for S2, as described above (lines 30–32). The three
arrays are then sorted (lines 33–35) and merged, whereby the comparison functions
compares two representatives character-wise until a rank is found. The difference
cover property guarantees that such a rank is found for every pair Si, Sj during the
Merge (lines 36–44).

The difference cover algorithm DC3 generalizes to DCX using a difference cover
D for any ground set size X > 3. DCX constructs a recursive subproblem of size
|D|/X , has at most logX |T | recursion levels and only one recursion branch. At every
level of the recursion, only work with sorting complexity is needed, and a straight-
forward application of the Master theorem shows that the whole algorithms has the
same complexity due to the small recursive subproblem. In the RAM model and
with integer alphabets one can use radix sort in each level and thus DCX has linear
running time. For our distributed model, DCX has the same complexity as sorting
and merging.

Due to the subproblem size |D|/X is it best to use the largest X for a specific
difference cover size. For |D| = 2 this is X = 3, aka DC3. For difference covers
of size three, the largest X = 7 which yields DC7 with D7 = {0, 1, 3}. And for
difference covers of size four, the largest X = 13. Weese [23] showed that DC7 is
optimal regarding the number of I/Os in an external memory model assuming index
types are four times the byte size of characters. Due to these previous results we also
implemented DC7 in Thrill.

Most of the previous discussion on DC3 can easily be extended to DC7: sort by
seven characters instead of three, construct TR = T0 ⊕T1⊕T3 in case not all character
tuples are unique, and have Step 1 deliver R0, R1, and R3 containing the ranks of all
suffixes i ∈ D7. We included the Thrill algorithm code for DC7 in Algorithms 11–13.

The key to implementing DC7 is in the construction of the tuple contents of the
seven arrays S0, . . . , S6 from R0, R1, R3, and characters from T . Figure 3 shows a
schematic to illustrate the underlying construction. For each index i there are three
indexes (i + k0 mod 7), (i + k1 mod 7), and (i + k3 mod 7) in the difference cover D7.
The offsets depend on j = i mod 3 for some index i, which classifies the suffix into
Sj . The tuples in the arrays must contain all characters up to (but excluding) the
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c0 c1/r1 r2

c1/r1 r2

c2/r2 c̄0 r̄1

S0

S1

S2

for DC3 with D3 = {1, 2}

c0/r0 c1/r1 c2 r3

c1/r1 c2 c3/r3 c4 c5 c6 r̄0

c2 c3/r3 c4 c5 c6 c̄0/r̄0 r̄1

c3/r3 c4 c5 c6 c̄0/r̄0 r̄1

c4 c5 c6 c̄0/r̄0 c̄1/r̄1 c̄2 r̄3

c5 c6 c̄0/r̄0 c̄1/r̄1 c̄2 r̄3

c6 c̄0/r̄0 c̄1/r̄1 c̄2 r̄3

S0

S1

S2

S3

S4

S5

S6

for DC7 with D7 = {0, 1, 3}

Fig. 3. Construction of tuples in arrays Si to represent suffixes in DC3 and DC7.

last known rank, since this is the information needed for the comparison function to
perform character-wise comparisons up to the next known rank. The components of
the tuples in S0, . . . , S6 visualized in Figure 3 are selected in Algorithm 12 from Z
via seven Map operations (lines 7–13). They are then sorted by characters up to the
next known rank (lines 14–20) and then merged using CompareDC7 (Algorithm 13),
which compares tuples character-wise up to the next known rank from all possible
Si/Sj pairs.

In our Thrill implementation, CompareDC7 is not rolled out as shown in the
figure. Instead a lookup tables is used to determine how many characters and which
of the included ranks need to be compared. Surprisingly, this more complex code was
faster in our preliminary experiments, possibly due to the larger cost of decoding the
instructions is the large unrolled comparison function.

3 Conclusion

We presented the implementation of five different suffix array construction algorithms
in Thrill showing that the small set of algorithmic primitives provided by Thrill is
sufficient to express the algorithms within the framework.

Our preliminary experimental results show that algorithms implemented in Thrill
are competitive to hand-coded MPI implementations. By using the Thrill framework
we gain additional benefits like future improvements of the algorithmic primitives in
Thrill, and possibly even fault tolerance. Furthermore, Thrill already has automatic
external memory support, hence our implementations are the first distributed external
memory suffix array construction algorithms.

In a future version of this paper, we are going to add experimental results which
detail the performance of our algorithms implemented in Thrill against their counter-
parts using MPI.
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Algorithm 11: DC7 Algorithm in Thrill (part one).

1 function DC7PartOne(T ∈ DIA〈Σ〉)
2 T7 := T.FlatWindow7((i, [ c0, c1, . . . , c6 ]) 7→ MakeTuples(i, c0, c1, . . . , c6))
3 with function MakeTuples (i ∈ N0, c0, c1, . . . , c6 ∈ Σ)
4 if i ∈ D7 then emit (i, c0, c1, . . . , c6) // Make tuples in difference cover.

5 S := T7.Sort((i, c0, c1, . . . , c6) by (c0, c1, . . . , c6)) // Sort tuples lexicographically.
6 IS := S.Map((i, c0, c1, . . . , c7) 7→ i) // Extract sorted indices.
7 N ′ := S.FlatWindow2((i, [ p0, p1 ]) 7→ CmpTuple(i, p0, p1)) // Compare tuples.
8 with function CmpTuple(i ∈ N0, p0 = (c0, c1, . . . , c6), p1 = (c′

0, c′

1, . . . , c′

6)))
9 if i = 0 then emit 0 // Emit one sentinel for index 0.

10 if (c0, c1, . . . , c6) = (c′

0, c′

1, . . . , c′

6) then emit 0 // Emit 0 or 1 depending on
11 else emit 1 // whether the previous tuple is equal.

12 N := N ′.PrefixSum() // Use prefix sum to calculate names.
13 nsub = ⌈3|T |/7⌉, nmod0 = ⌈|T |/7⌉ // Size of recursive problem and mod 0,
14 nmod1 = ⌈|T |/7⌉, nmod01 = nmod0 + nmod1 // mod 1 and both parts of TR.
15 if N.Max() + 1 = nsub then // If duplicate names exist, sort names back to
16 T ′

R := Zip([ IS, N ], (i, n) 7→ (i, n)).Sort((i, n) by (i mod 7, i div 7)) // string order
17 SAR := DC7(T ′

R.Map((i, n) 7→ n)) // as T0 ⊕ T1 ⊕ T3 and call suffix sorter.
18 I ′

R := SAR.ZipWithIndex((i, r) 7→ (i, r)) // Invert resulting suffix array, but
19 IR := I ′

R.Sort((i, r) by (InterleavedRank(i), i)) // interleaved ISA for better locality
20 with function InterleavedRank(i ∈ N0)
21 return (if i < nmod0 then i else if i < nmod01 then i − nmod0 else i − nmod01)

22 R0 := IR.Filter((i, r) 7→ i < nmod0).Map((i, r) 7→ r + 1) // after separating
23 R1 := IR.Filter((i, r) 7→ i ≥ nmod0 and i < nmod01).Map((i, r) 7→ r + 1) // ISA into
24 R3 := IR.Filter((i, r) 7→ i ≥ nmod01).Map((i, r) 7→ r + 1) // R0, R1, and R3.

25 else // Else, if all names/tuples are unique, then IS is already the suffix array.
26 R := IS.ZipWithIndex((i, r) 7→ (i, r)) // Invert it to get ISA, but
27 IR := R.Sort((i, r) by (i div 7, i)) // interleave ISA for
28 R0 := IR.Filter((i, r) 7→ i = 0 mod 7).Map((i, r) 7→ r + 1) // better locality
29 R1 := IR.Filter((i, r) 7→ i = 1 mod 7).Map((i, r) 7→ r + 1) // after separating it
30 R3 := IR.Filter((i, r) 7→ i = 3 mod 7).Map((i, r) 7→ r + 1) // into R0, R1, and R3.

31 return DC7PartTwo(T, R0, R1, R3)
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Algorithm 12: DC7 Algorithm in Thrill (part two).

1 function DC7PartTwo(T ∈ DIA〈Σ〉, R0, R1, R3 ∈ DIA〈N0〉)

2 T̂7 := T.FlatWindow7((i, [ c0, c1, . . . , c6 ]) 7→ MakeTuples(i, c0, c1, . . . , c6))
3 with function MakeTuples (i ∈ N0, c0, c1, . . . , c6 ∈ Σ) // Prepare Zip with all
4 if not i /∈ D7 then emit (i, c0, c1, . . . , c6) // triples i /∈ D7.

5 Z′ := Zip([ T̂7, R0, R1, R3 ], ((i, c0, . . . , c6), r0, r1, r3) 7→ (c0, . . . , c6, r0, r1, r3) // Pull
6 Z := Z′.Window2((i, [ (z1, z2) ]) 7→ (i, z1, z2)) // chars and ranks using Zip from
7 S′

0 := Z.Map((i, (c0, . . . , c6,r0, r1, r3), (c̄0, . . . , c̄6, r̄0, r̄1, r̄3))

7→ (7i + 0, c0, r0, c1, r1, c2, r3))

// four arrays

8 S′

1 := Z.Map((i, (c0, . . . , c6,r0, r1, r3), (c̄0, . . . , c̄6, r̄0, r̄1, r̄3))

7→ (7i + 1, c1, r1, c2, c3, r3, c4, c5, c6, r̄0)

// to make

9 S′

2 := Z.Map((i, (c0, . . . , c6,r0, r1, r3), (c̄0, . . . , c̄6, r̄0, r̄1, r̄3))

7→ (7i + 2, c2, c3, r3, c4, c5, c6, c̄0, r̄0, r̄1)

// arrays of

10 S′

3 := Z.Map((i, (c0, . . . , c6,r0, r1, r3), (c̄0, . . . , c̄6, r̄0, r̄1, r̄3))

7→ (7i + 3, c3, r3, c4, c5, c6, c̄0, r̄0, r̄1)

// representatives

11 S′

4 := Z.Map((i, (c0, . . . , c6,r0, r1, r3), (c̄0, . . . , c̄6, r̄0, r̄1, r̄3))

7→ (7i + 4, c4, c5, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3)

// for each

12 S′

5 := Z.Map((i, (c0, . . . , c6,r0, r1, r3), (c̄0, . . . , c̄6, r̄0, r̄1, r̄3))

7→ (7i + 5, c5, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3)

// suffix class.

13 S′

6 := Z.Map((i, (c0, . . . , c6,r0, r1, r3), (c̄0, . . . , c̄6, r̄0, r̄1, r̄3))

7→ (7i + 6, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3)

14 S0 := S′

0.Sort((i, c0, r0, c1, r1, c2, r3) by (r0)) // Sort representatives
15 S1 := S′

1.Sort((i, c1, r1, c2, c3, r3, c4, c5, c6, r̄0) by (r1)) // character-wise up to
16 S2 := S′

2.Sort((i, c2, c3, r3, c4, c5, c6, c̄0, r̄0, r̄1) by (c2, r3)) // next rank, and merge
17 S3 := S′

3.Sort((i, c3, r3, c4, c5, c6, c̄0, r̄0, r̄1) by (r3)) // sorted representatives
18 S4 := S′

4.Sort((i, c4, c5, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3) by (c4, c5, c6, r̄0)) // to deliver the
19 S5 := S′

5.Sort((i, c5, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3) by (c5, c6, r̄0)) // final suffix array.
20 S6 := S′

6.Sort((i, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3) by (c6, r̄0)) // See Algorithm 13
21 return Merge([ S0, S1, . . . , S6 ], CompareDC7).Map((i, . . .) 7→ i) // for CompareDC7.
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Algorithm 13: Full Comparison Function in DC7.

1 function CompareDC7(z1, z2)
2 (r0) < (r′

0) if z1 ∈ S0, z2 ∈ S0,
3 (r0) < (r′

1) if z1 ∈ S0, z2 ∈ S1,
4 (c0, r1) < (c′

2, r′

3) if z1 ∈ S0, z2 ∈ S2,
5 (r0) < (r′

3) if z1 ∈ S0, z2 ∈ S3,
6 (c0, c1, c2, r3) < (c′

4, c′

5, c′

6, r̄′

0) if z1 ∈ S0, z2 ∈ S4,
7 (c0, c1, c2, r3) < (c′

5, c′

6, c̄′

0, r̄′

1) if z1 ∈ S0, z2 ∈ S5,
8 (c0, r1) < (c′

6, r̄′

0) if z1 ∈ S0, z2 ∈ S6,

9 (r1) < (r′

1) if z1 ∈ S1, z2 ∈ S1,
10 (c1, c2, c3, c4, c5, c6, r̄0) < (c′

2, c′

3, c′

4, c′

5, c′

6, c̄′

0, r̄′

1) if z1 ∈ S1, z2 ∈ S2,
11 (r1) < (r′

3) if z1 ∈ S1, z2 ∈ S3,
12 (c1, c2, c3, c4, c5, c6, r̄0) < (c′

4, c′

5, c′

6, c̄′

0, c̄′

1, c̄′

2, r̄′

3) if z1 ∈ S1, z2 ∈ S4,
13 (c1, c2, r3) < (c′

5, c′

6, r̄′

0) if z1 ∈ S1, z2 ∈ S5,
14 (c1, c2, r3) < (c′

6, c̄′

0, r̄′

1) if z1 ∈ S1, z2 ∈ S6,

15 (c2, r3) < (c′

2, r′

3) if z1 ∈ S2, z2 ∈ S2,
16 (c2, c3, c4, c5, c6, r̄0) < (c3, c4, c5, c6, c̄0, r̄′

1) if z1 ∈ S2, z2 ∈ S3,
17 (c2, c3, c4, c5, c6, c̄0, r̄1) < (c′

4, c′

5, c′

6, c̄′

0, c̄′

1, c̄′

2, r̄′

3) if z1 ∈ S2, z2 ∈ S4,
18 (c2, c3, c4, c5, c6, r̄0) < (c′

5, c′

6, c̄′

0, c̄′

1, c̄′

2, r̄′

3) if z1 ∈ S2, z2 ∈ S5,
19 (c2, r3) < (c′

6, r̄′

0) if z1 ∈ S2, z2 ∈ S6,

20 (r3) < (r′

3) if z1 ∈ S3, z2 ∈ S3,
21 (c3, c4, c5, c6, r̄0) < (c′

4, c′

5, c′

6, c̄′

0, r̄′

1) if z1 ∈ S3, z2 ∈ S4,
22 (c3, c4, c5, c6, c̄0, r̄1) < (c′

5, c′

6, c̄0, c̄1, c̄2, r̄′

3) if z1 ∈ S3, z2 ∈ S5,
23 (c3, c4, c5, c6, r̄0) < (c′

6, c̄′

0, c̄′

1, c̄′

2, r̄′

3) if z1 ∈ S3, z2 ∈ S6,

24 (c4, c5, c6, r̄0) < (c′

4, c′

5, c′

6, r̄′

0) if z1 ∈ S4, z2 ∈ S4,
25 (c4, c5, c6, r̄0) < (c′

5, c′

6, c̄′

0, r̄′

1) if z1 ∈ S4, z2 ∈ S5,
26 (c4, c5, c6, c̄0, r̄0) < (c′

6, c̄′

0, c̄′

1, c̄′

2, r̄′

3) if z1 ∈ S4, z2 ∈ S6,

27 (c5, c6, r̄0) < (c′

5, c′

6, r̄′

0) if z1 ∈ S5, z2 ∈ S5,
28 (c6, c̄0, r̄1) < (c′

6, c̄′

0, r̄′

1) if z1 ∈ S5, z2 ∈ S6,

29 (c6, r̄0) < (c′

6, r̄′

0) if z1 ∈ S6, z2 ∈ S6,

30 and symmetrically for z1 ∈ Si, z2 ∈ Sj if i > j ,

31 with z1 = (i, c0, r0, c1, r1, c2, r3) if z1 ∈ S0,
32 z2 = (i′, c′

0, r′

0, c′

1, r′

1, c′

2, r′

3) if z2 ∈ S0,
33 z1 = (i, c1, r1, c2, c3, r3, c4, c5, c6, r̄0) if z1 ∈ S1,
34 z2 = (i′, c′

1, r′

1, c′

2, c′

3, r′

3, c′

4, c′

5, c′

6, r̄′

0) if z2 ∈ S1,
35 z1 = (i, c2, c3, r3, c4, c5, c6, c̄0, r̄0, r̄1) if z1 ∈ S2,
36 z2 = (i′, c′

2, c′

3, r′

3, c′

4, c′

5, c′

6, c̄′

0, r̄′

0, r̄′

1) if z2 ∈ S2,
37 z1 = (i, c3, r3, c4, c5, c6, c̄0, r̄0, r̄1) if z1 ∈ S3,
38 z2 = (i′, c′

3, r′

3, c′

4, c′

5, c′

6, c̄′

0, r̄′

0, r̄′

1) if z2 ∈ S3,
39 z1 = (i, c4, c5, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3) if z1 ∈ S4,
40 z2 = (i, c′

4, c′

5, c′

6, c̄′

0, r̄′

0, c̄′

1, r̄′

1, c̄′

2, r̄′

3) if z2 ∈ S4,
41 z1 = (i, c5, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3) if z1 ∈ S5,

42 z2 = (i′, c′

5, c′

6, c̄′
0, r̄′

0, c̄′

1, r̄′

1, c̄′

2, r̄′

3) if z2 ∈ S5,
43 z1 = (i, c6, c̄0, r̄0, c̄1, r̄1, c̄2, r̄3) if z1 ∈ S6,
44 z2 = (i′, c′

6, c̄′

0, r̄′

0, c̄′

1, r̄′

1, c̄′

2, r̄′

3) if z2 ∈ S6.

20



T

T7 := T.FlatWindow7

S := T7.Sort

Is := S.Map

Cache

N ′ := S.FlatWindow2

N := N ′.PrefixSum

N.Max R := IS.ZipWithIndex

IR := R.Sort

R′

0 := IR.Filter

R0 := R′

0.Map

Collapse

R′

1 := IR.Filter

R1 := R′

1.Map

Collapse

R′

3 := IR.Filter

R3 := R′

3.Map

Collapse

T̂7 := T.FlatWindow7

Z′ := Zip([ T̂7, R0, R1, R3 ])

Z := Z′.Window2

S′

0 := Z.Map

S′

1 := Z.Map

S′

2 := Z.Map

S′

3 := Z.Map

S′

4 := Z.Map

S′

5 := Z.Map

S′

6 := Z.Map

S0 := S′

0.Sort

S1 := S′

1.Sort

S2 := S′

2.Sort

S3 := S′

3.Sort

S4 := S′

4.Sort

S5 := S′

5.Sort

S6 := S′

6.Sort

Merge([ S0, S1, . . . , S6 ])

SAT

Fig. 4. DIA data-flow graph of DC7 with no recursion.
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We will also show how compressed indexes like the FM-index can be efficiently
constructed using the Thrill framework. Additionally, we want to extend the existing
algorithms with longest common prefix (LCP) array construction and the DCX al-
gorithms with discarding tuples [19] similar to the technique we applied to the prefix
doubling algorithms.
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