Inducing Suffix and LCP Arrays in External Memory

Timo Bingmann®, Johannes Fischer', and Vitaly Osipov"

“Karlsruhe Institute of Technology
fTechnical University of Dortmund

Pre-print Article — First submitted April 2013, last compiled April 25, 2014

Abstract

We consider full text index construction in external memory (EM). Our first con-
tribution is an inducing algorithm for suffix arrays in external memory, which runs in
sorting complexity. Practical tests show that this algorithm outperforms the previous
best EM suffix sorter [Dementiev et al., JEA 2008] by a factor of about two in time
and I/O-volume. Our second contribution is to augment the first algorithm to also
construct the array of longest common prefixes (LCPs). This yields a new internal
memory LCP array construction algorithm, and the first EM construction algorithm
for LCP arrays. The overhead in time and I/O volume for this extended algorithm
over plain suffix array construction is roughly two. Our algorithms scale far beyond
problem sizes previously considered in the literature (text size of 80 GiB using only 4
GiB of RAM in our experiments).

1 Introduction

Suffix arrays [Manber and Myers, 1993; Gonnet et al., 1992] are among the most popular
data structures for full text indexing. They list all suffixes of a static text in lexicographically
ascending order. This not only allows to efficiently locate arbitrary patterns in unstructured
texts (like DNA, East Asian languages, etc.) in time proportional to the pattern length (as
opposed to text length), but also fast phrase searches (e.g., “to be or not to be”) if the suffix
array is built over the phrase beginnings only [Ferragina and Fischer, 2007].

The first and most important step in using suffix arrays is the efficient construction of
the index (also called “suffiz sorting”), the term “efficient” encompassing both time and
space. Until recently, the text indexing community was confronted with the dilemma that
there were theoretically fast algorithms for constructing suffix arrays (linear-time for integer
alphabets) that were rather slow in practice [Antonitio et al., 2004], while other superlinear
algorithms existed that outperformed the linear ones on all realistic instances, in terms of
both time and space [Manzini and Ferragina, 2004; Schiirmann and Stoye, 2007; Maniscalco
and Puglisi, 2008, etc.]. In particular, the extremely elegant difference cover algorithm (DC3
for short) by Karkkiinen et al. [2006], which has quickly become a showcase string algorithm
and is now being taught in many computer science classes around the world, is reported to be
3—4 times slower than the best superlinear solutions, even with very careful implementations
[Puglisi et al., 2007].

This work is supported by the German Research Foundation (DFG) under SPP 1307, and by EU
Project No. 248481 (PEPPHER) ICT-2009.3.6. Preliminary versions of this article were presented at the
12th International Symposium on Algorithms and Data Structures (WADS 2011), and at the 2013 Meeting
on Algorithm Engineering & Experiments (ALENEX 2013). Author’s addresses: Timo Bingmann and Vitaly
Osipov: Karlsruhe Institute of Technology, Department of Informatics, 76128 Karlsruhe, Germany. Email
addresses: firstname.lastname®kit.edu. Johannes Fischer: Technical University of Dortmund, Department of
Computer Science, Chair of Algorithm Engineering (LS11), Otto-Hahn-Str. 14, 44227 Dortmund, Germany.
Email address: johannes.fischer@cs.tu-dortmund.de.

This situation changed when in 2009 Nong et al. [2011] (we cite more recent journal
versions whenever possible) presented another extremely elegant linear time algorithm called
SAIS that was also fast in practice, which was based on the induced sorting principle [Itoh
and Tanaka, 1999]. In addition to being almost in-place and faster than (or almost as fast
as) all previous algorithms on all practical inputs, its worst-case guarantees also imply that
it has a similar behavior on all inputs, while for all engineered superlinear algorithms, like
those mentioned in the preceding paragraph, there exist “bad” inputs where the running
time shoots up by several order of magnitudes.

Nonetheless, the simplicity of the DC3 algorithm (mostly sorting and scanning) enables
straightforward adaptation to more advanced models of computation (PRAM, EM, dis-
tributed, etc.), and usually leads to optimal algorithms in those models. In fact, there is
a fast EM implementation of DC3 [Dementiev et al., 2008a] that outperformed all other
external suffix sorters in practice at the time of its writing. Other external implementations
of DC3 (or its variant DCT7) confirmed those results [Déring et al., 2008].

In many applications (e.g., for fast string matching), the suffix array needs to be aug-
mented with the longest common prefiz array (LCP array for short), which holds the lengths
of longest common prefixes of lexicographically consecutive suffixes. In internal memory, the
LCP array can be constructed sufficiently fast [Kasai et al., 2001; Manzini, 2004; Karkkai-
nen et al., 2009; Gog and Ohlebusch, 2011]. In the EM model, the DC3 suffix sorter can be
augmented to also construct the LCP array within sorting complexity. However, we are not
aware of any previous implementation of this approach. Another purely theoretical solution
is to use the EM suffix tree algorithm [Farach-Colton et al., 2000] for constructing LCP
arrays and derive the LCP array by an EM Euler tour over the tree. This approach seems
even less suitable for an efficient implementation. There are only a couple of semi-external
construction algorithms [Gog and Ohlebusch, 2011; Kéarkkéinen et al., 2009; Weese, 2006],
where “semi-external” means that they only need some arrays in main memory, while other
parts can be scanned.

We point out that a truly external LCP array construction algorithm is the only missing
piece for a fast practical EM suffix tree construction, because, as [Barsky et al., 2010, p. 986]
say in their survey on EM suffix trees: “The conversion of a suffix array into a suffix tree
turned out to be disk-friendly, since reads of the suffix array and writes of the suffix tree
can be performed sequentially. However, the suffix array needs to be augmented with the
LCP information in order to be converted into a suffix tree” They also comment on the
possibility of adapting external DC3 to LCP arrays: “It is currently not clear how efficient
the presented algorithm for the LCP computation would be in a practical implementation.”
And finally they say: “It may be only one step that divides us from a scalable solution
for constructing suffix trees on disk for inputs of any type and size. Once this is done, a
whole world of new possibilities will be opened, especially in the field of biological sequence
analysis.” The present paper tries to close this gap, as outlined in the following section “Our
Contributions.”

1.1 Our Contributions and Outline

Motivated by the superior performance of the SAIS algorithm over other suffix array
construction algorithms in internal memory, in this paper we investigate how the induced
sorting principle can be exploited in the EM model. We have two goals in mind: (1) engineer
an EM suffix sorting algorithm that outperforms the currently best one [Dementiev et al.,
2008a] while keeping it within sorting complexity, and (2) implement the first external
memory LCP array construction algorithm that is faster than a DC3-based approach. Both
of our algorithms are based on the induced sorting principle [Nong et al., 2011]. Thus, we

make the first comparative study of suffix sorting in EM that includes algorithms based
on the induced sorting principle, since all previous studies [Dementiev et al., 2008a; Barsky
et al., 2010] were conducted before the advent of SAIS. Besides outputting the suffix and LCP
arrays, our algorithm can also generate the Burrows-Wheeler transform (BWT) [Burrows
and Wheeler, 1994].

In Section 2, we first give some basic definitions and recapitulate the SAIS algorithm
in internal memory. Section 3 contains the first technical contribution of this article: we
show how SAIS can be augmented to also construct the LCP-array in internal memory.
Then, in Section 4, we show that SAIS is suitable for the EM model by reformulating the
original algorithm such that it uses only scanning, sorting, merging, and priority queues.
The former three operations are certainly doable in EM, and there are also EM priority
queues achieving sorting lower bounds in theory [Arge, 2003]. In practice, the most efficient
priority queues are those of Sanders [2000] and Dementiev et al. [2008b]. We make some
careful implementation decisions in order to keep the I/O-volume low. As a result, our new
algorithm, called eSAIS, is about two times faster than the EM-implementation of DC3
[Dementiev et al., 2008a]. The I/O volume is reduced by a similar factor. In Section 6 we
engineer the first fully EM algorithm for LCP array construction (building on the internal
memory algorithm from Section 3). It is 3—4 times faster than our own implementation of
LCP construction using DC3 (recall there was no such implementation before). The increase
in both time and I/O volume of eSAIS with LCP array construction compared to pure suffix
array construction is only around two.

Our experimental results are given in Section 7. There, we apply our algorithms on very
large instances. At the extreme end, we could build the suffix-array for an 80 GiB XML
dump of the English Wikipedia in 2.5 psec per character using only 4 GiB of main memory,
with a total of about 18 TiB of generated I/O-volume. In sum, all experiments reported in
this paper took 34 computing days and 200 TiB I/O volume.

1.2 Further Related Work

General-purpose EM string sorting routines have been described by Arge et al. [1997].
There are also practical EM methods for constructing related text indexes like the Burrows-
Wheeler transform [Ferragina et al., 2012]. A recent paper [Bauer et al., 2012] describes an
EM LCP array construction algorithm for the specific case of short DNA-reads (which is,
due to the quadratic dependency on the length of the longest read, not suitable for arbitrary
strings). A completely different research topic not pursued here is how to use an external
suffix array to efficiently answer queries; see e.g. [Sinha et al., 2008].

1.3 Differences to the Conference Versions

This article extends the material already presented at the 12th International Symposium
on Algorithms and Data Structures [Fischer, 2011], and at the 2013 Meeting on Algorithm
Engineering & Experiments [Bingmann et al., 2013]. We now give the full details and proofs
for the inducing algorithm of the LCP array (Section 3). We also show more experimental
results, such as details on the fill status of the used priority queues (Section 4.2) and on the
recursion depth (Figure 7). We now also compare our running times with those of bwtdisk
by Ferragina et al. [2012].

2 Preliminaries

Let [0,n] := {0,...,n} and [0,n) := {0,...,n — 1} be ranges of integers, and 1 .ong €
{0,1} be a boolean variable indicating the truth of condition cond.

Given a string T' = [tg...t,—1] of n characters drawn from a totally ordered alphabet
¥, we call the substring T; := [¢; . ..t,—1] the i-th suffix of T. For a simpler exposition, we
assume that t, 1 is a unique character ‘$’ that is lexicographically smallest, although our
implementation does not rely on such a sentinel character. The suffiz array SAr of T is
the permutation of the integers [0,n), such that Tsa,[;—1] < Tsa.[;) (lexicographic order is
always intended when comparing strings by “<”). We denote the inverse permutation of
SA7 by ISA7. The companion array LCPy is defined as LCPp[i] := LcPp(SAr[i — 1], SAr[i]),
where LCPr[0] remains undefined and LCP7 (4, j) is the length of the longest common prefix
(LCP) of the suffixes T; and Tj. For any array A, we write A[¢,r] to denote the sub-array
of A ranging from ¢ to r.

The algorithms in this paper are written in a tuple pseudo-code language, which mixes
Pascal-like control flow with array manipulation and mathematical set notation. This en-
ables powerful expressions like A := [(i? mod 7,4) | i € [0,5)], which sets A to be the array
of pairs [(0,0), (1,1), (4,2),(2,3),(2,4)]. The individual operations in the tuple pseudo-code
are implementable in EM using appropriate algorithms: for example (i,5) € A resembles a
scan over array A, and A’ := Sort(A) calls an EM sorting algorithm, which by default sorts
tuples lexicographically.

2.1 Induced Sorting Toolkit

Following previous work [Nong et al., 2011], we classify all suffixes into two types: S and
L. For suffix T; the type(i) is S if T; < T;41, and L if T; > T;4q. Suffix T, is fixed as
type S. Furthermore, we distinguish the “left-most” occurrences of either type as S* and L*;
more precisely, T; is S* if T; is S-type and T;_1 is L-type. Symmetrically, T; is L*-type if T;
is L-type and T;_; is S-type. The last suffix T,,_1 = [$] is always S*, while the first suffix is
never S* nor L*. Sometimes we also say the character ¢; is of type type(i).

Using these classifications, one can identify subsequences within the suffix array. The
range of suffixes starting with the same character c¢ is called the c-bucket, which itself is
composed of a sequence of L-suffixes followed by S-suffixes. We call these subsequences the
¢-L- and ¢-S-subbuckets or just L/S-subbuckets if the character is implied by the text. We
also define the repetition count for a suffix T; as rep(i) := maxgeny {t; = tit1 =+ = titk};
then the L/S-subbuckets can further be decomposed into ranges of equal repetition counts,
which we call repetition buckets.

The principle behind induced sorting is to deduce the lexicographic order of unsorted
suffixes from a set of already ordered suffixes. Many fast suffix sorting algorithms incorporate
this principle in one way or another [Puglisi et al., 2007]. They are built on the following
inducing lemma [Ko and Aluru, 2005]:

Lemma 1. If the lexicographic order of all S*-suffizes is known, then the lexicographic order
of all L-suffizes can be induced iteratively smallest to largest.

Proof. We start with £ := S* as the lexicographically ordered list of S*-suffixes, and U as
the set of unordered L-suffixes. After the following procedure, the list £ will contain all L-
and S*-suffixes in lexicographic order: Iteratively, choose the unsorted L-suffix T; € U that

(1) has smallest first character t;, and
(2) among those with the same ¢;, the one such that T;;; has smallest rank within L.

(It follows from this procedure that for the chosen suffix T;, suffix T;11 must already be in
L.) From these properties, T; < T follows for all L-suffixes T; € U\ {1}}, because the L-type
property forms ascending chains of unsorted suffixes in &. Due to the transitive ordering
of L-suffix >-chains in U it suffices to pick the smallest of the “tails” of these chains, which

sl T 171 e]

ifof1 2 3 4|5 6 7 8:i9 10|11 12 13 14
SArf14/1 7 3 9|6 2 8 5:11 12|13 0 4 10
LCPyf-}{0 6 1 4|0 2 5 1:2 1|0 1 1 3
[1 |)
— \ \
C J]

Figure 1: Example of the inducing steps on the string 7' = [cabacbbabacbbc$]. Assume that the
relative order of S*-suffixes (bold font) is known (see Figure 3 for the recursion). They are placed
into their corresponding S-subbuckets as described in step (2). In step (3), suffix- and LCP-values
of the L-suffixes (normal font) are induced from the LCPs of S*-suffixes. Afterwards, in step (4),
the reverse process (shown above the array) induces all S-suffixes from the L*-suffixes.

are those suffixes T; with T;; € £. So T; can be inserted into £ as the next larger L-suffix
among all suffixes that start with ¢;. Thus the iterative procedure always picks the smallest
remaining suffix and places it as the next larger one in the ¢;-L-subbucket. This procedure
ultimately sorts all L-suffixes, because each has an S*-suffix to its right. O

Analogously, the order of all S-suffixes can be induced iteratively largest to smallest, if
the relative order of all L*-suffixes is known. This results in the following high-level four
step algorithm SAIS [Nong et al., 2011]:

(1) Sort the S*-suffixes. This step will be explained in more detail below.

(2) Put the sorted S*-suffixes into their corresponding S-subbuckets, without changing their
order. All other entries remain undefined. Prepare head and tail pointers for all L-
subbuckets in SA.

(3) Induce the order of the L-suffixes by scanning SA from left to right (skipping undefined
entries): for every position i in SA, if Tsaf;—1 is L-type, write SA[i] — 1 to the current
head of the ¢-L-subbucket (where ¢ = tsafi]—1, the preceding character), and increase the
current head of that bucket by one. Note that this step can only induce “to the right”
(the current head of the ¢-L-subbucket is larger than).

(4) Induce the order of the S-suffixes by scanning SA from right to left: for every position
i in SA, if Tsap)—1 is S-type, write SA[i] — 1 to the current tail of the c-S-subbucket
(c= tSAm,l), and decrease the current tail of that bucket by one. Note that this step
can only induce “to the left,” and might intermingle arbitrary S-suffixes with S*-suffixes.

Figure 1 illustrates the inducing steps (3) and (4) with arrows, step (3) as arrows below
the suffix array and step (4) above it (ignore for now the row labeled “LCP7”).

It remains to find the relative order of S*-suffixes. For each S*-suffix T;, we define the
S*-substring [t;,...,t;], where T} is the next S*-suffix in the string. The last S*-suffix [$] is
fixed to be a sentinel S*-substring by itself. We call the last character ¢; of each S*-substring
the overlapping character, since it is also the first character of the next S*-substring. S*-
substrings are ordered lexicographically, with each letter compared first by character and
then by type, L-characters being smaller than S-characters in case of ties. This partial order
allows one to apply lexicographic naming to S*-substrings. By representing each S*-substring
by its lexicographic name in the super-alphabet ¥*, one can efficiently solve the problem
of finding the relative order of S*-suffixes by recursively suffix sorting the reduced string
of lexicographic names of S*-substrings [Nong et al., 2011]. The overlapping character is

i j k-1 k

SAr z+1 - y+1 Ty
LCPp * * * h
S 1 i) T

]

Figure 2: General scheme of the inducing step. When inducing k, the LCP value h = RMQcp,,. (i +
1,7) + 1 can be derived using an range minimum query (RMQ) between the previous and current
relative ranks of the induce sources.

needed because all L- and then all S-suffixes encompassed by the S*-substring are induced
from the recursively determined order, thus the last S-suffix (the overlapping character)
must also be considered. Throughout this article, we denote the reduced string consisting
of lexicographic names by R, and the recursively computed suffix array by SAg.

3 Inducing LCP-Arrays in Main Memory

In this section we explain how the induced sorting algorithm (Section 2.1) can be modified
to also compute the LCP-array in main memory. This will form the basis of our external
memory adaption in Section 6. Besides that, the algorithm is novel and an interesting
alternative to existing internal memory LCP-array construction algorithms [Kasai et al.,
2001; Manzini, 2004; Kérkkéinen et al., 2009; Gog and Ohlebusch, 2011].

The basic idea is that whenever we place two S- or L-suffixes T3, and T}, at adjacent places
k —1 and k in same c-bucket of the final suffix array (see Figure 2 and steps (3)—(4) of the
algorithm in Section 2.1), the length of their longest common prefix can be induced from
the longest common prefix of the suffixes T;11 and Ty11. As the latter suffixes are exactly
those that caused the inducing of T, and T}, we already know their LCP-value ¢ (by the
order in which we fill SA), and can hence set LCPp[k] to ¢+ 1.

The details are described next. We augment the steps of the induced sorting algorithm
as follows:

(1) Compute LCPg«, the array of LCP-values of the S*-suffixes (see Section 3.1).

(2") Whenever we place an S*-suffix into its S-subbucket, we also store its LCP-value (as
computed in step (1')) at the corresponding position in LCP.

(3') Suppose that the j-th inducing iteration just put suffix T, with y = SA[k] into its
c-L-subbucket (c = ¢,) at position k. If T} is the first suffix in its L-subbucket, we set
LCPr[k] to 0. Otherwise, suppose further that in a previous iteration ¢ < j the inducing
step placed suffix T), at k — 1 in the same c-L-subbucket, with = SA[k — 1]. Then if
¢ and j are in different buckets, the corresponding suffixes 7,411 and T4 start with
different characters, so we set LCPr[k] to 1, as the suffixes T, and T, share only the
common character ¢ at their beginnings. Otherwise, x + 1 and y + 1 are in the same
c’-bucket, with t;41 = ¢’ = ty41. Then the length h of the longest common prefix of the
suffixes T, 1 and T4 is given by the minimum value in LCPr[i+1, j], all of which are
in the same ¢’-bucket and have therefore already been computed in previous iterations.
We can hence set LCP7[k] to h + 1. We address the problem of how to compute these
minima in Section 3.2.

(4") This step is symmetric to step (3').

We will resolve the problem of computing the LCP-value between the last L-suffix and
the first S-suffix in a bucket in Section 3.3.

For an example, look at the inducing of suffixes T, and Ty in Figure 1. Both suffixes start
with character b. The suffixes that caused their inducing are T3 and Ty at positions 3 and
4 of SAr, respectively, both starting with a. Their LCP is 4, which is (trivially) determined
by finding the minimum in LCPr[4,4]. Therefore, we set LCP7[7] to 5.

3.1 Computing LCP-Values of S*-suffixes

Here, we give the details on step (1’) above. From the recursion, we can assume that the
LCP array LCPpg of the reduced string R is calculated together with SAg, while in the base
case with unique lexicographic names LCPp is simply filled with zeros.

Let s7,..., s} be the K positions of S*-substrings in 7', ordered as in the input string.
Given the recursively calculated LCP array LCPg and SAg, we now show how to calculate
LCPg- [k] := LCP1(S8p , 1—1)> S5a () Which is the maximum number of equal characters (in

T, not in R!) starting at two lexicographically consecutive 8*-suffixes s, ;) and sga, -
See also Figure 3, which gives an example of all concepts presented in this section.

There are two main issues to be dealt with: firstly, a reduced character in R is composed
of several characters in T. Apart from the obvious need for scaling the values in LCPg
by the lengths of the corresponding S*-substrings, we note that even different characters
in R can have a common prefix in T" and thus contribute to the total LCP. For example,
in Figure 3 the first two S*-substrings [aba] and [acbba] both start with an ’a’, although
they are different characters in R. The second issue is that lexicographically consecutive
S*-suffixes can have LCPs encompassing more than one S*-substring in one suffix, but not
in the other. For example, the S*-suffix T3 = [acbbabacbbc$] and Ty = [acbbc$] have an
LCP of 4 that spans two S*-substrings of the latter suffix.

To handle both issues, we store the length of each S*-substring, minus the one overlapping
character, in an array called Sizes- := [s;,; — s} | k € [0, K)] in string order, with K being
the number of S*-substrings and s}, = n — 1. Also, during the lexicographic naming process
(which sorts the S*-substrings), we compute the LCPs of lexicographically consecutive S*-
substrings in an array LCPy. The resulting array LCP y is then prepared for constant-time
range minimum queries (RMQs) [Fischer and Heun, 2011]; such queries return the minimum
among all array entries in a given range: RMQ4 (¢, 7) = miny<;<, A[é] for an array A. This
allows us to find the common characters of arbitrary S*-suffixes, as shown in the next lemma.

Lemma 2. Given SAg, ISAg, LCPg, Sizeg+, and LCPy, the array LCPg«[k] can be calcu-
lated by

SAR[k]+LCPR[k]—1
LCPg-[k] =) _ Sizes-[i] + RMQLcp,, (¢[k] + 1, 7[k]) (1)
i=SAg[k]
with (k] = ISAR[SAR[k — 1] + LCPR[#]]
and r[k] = ISAR[SAR[k] + LCPR[k]] ,

Proof. We must show that this expression counts the maximum number of equal characters
starting at the S*-suffixes 55, ;) and sgu), which are lexicographically consecutive.
Because they are consecutive, LCPg[k] was calculated recursively as the number of equal
complete S*-substrings starting at these positions. Thus summing over the sizes of those
equal S*-substring entries from SAg[k] to SAg[k] 4+ LCPg[k] — 1 (or, equivalently, SAg[k — 1]
to SAg[k—1]+LCPr[k]—1) yields the total number of equal characters in whole S*-substrings.

i0 1 2 3 456 7 8 910111213 14
T cabacbbabacbbec}$ [ti..-t;] itype(i) rep(j) LCPxn
type(i) L S*L*S*L*L L S*L*S*L*S*S L*S* [$] 14 [0 _
R (10§ 2 T10304§ 4 (0 [aba] 1 s 0 0
Sizeg~ 2 4 2 2 3 0 [aba] 7 S8 0 3
k0123 45 [acbba] 3 8 0 1
SAR 5 02134 cb] 9 s 1 4
LCPr — 0100 0 [bbcg] 11 S 0 0
LCPsx— 0 6 1 4 0

Figure 3: Example of the structures before and after the recursive call of the induced sorting
algorithm. Left: the top part shows the text, the classification of suffixes and the reduced string R
on which the algorithm is run recursively. The resulting suffix and LCP arrays for R are shown in
the lower part (SAr and LCPr). Whereas the former has a direct correspondence to the S*-suffixes
in T, the latter needs to be expanded to LCPgs+ to account for the different alphabets in 1" and
R. Right: additional information needed to expand LCPg to LCPg+, consisting of the sorted S*-
substrings and associated information. The last column LCPy shows the LCPs of lexicographically
consecutive S*-substrings.

It thus remains to determine the longest common prefix of the first pair of unequal
S*-substrings contained in both S*-suffixes. This first pair of unequal S*-substrings is
SAR[k — 1]+ LCPg[k] and SAg[k] + LCPg[k]. However, instead of calculating LCP7(SAg[k —
1] + LCPRIk], SAg[k] + LCPRk]) directly, we resort to looking up the lexicographic ranks of
these positions in ISA. So, ISA[SAr[k — 1] + LCPg[k]] and ISA[SARg[k] + LCPg[k]] are the
lexicographic ranks of the pair of unequal S*-substrings. These ranks need not be adjacent
in SA, therefore instead of a direct lookup in LCPy, an RMQ between these ranks becomes
necessary. Notice that LCPy is constructed from names, while the queries boundaries are
ranks. This is however still correct, as the range in LCPy corresponding to the same lex-
icographic name is filled with the length of the name, except for the first entry. Because
the LCP to both predecessor or successor name is no longer than the length, for RMQ
calculation is suffices to take any rank of the same lexicographic name.

If LCPR[k] = 0, then the whole expression reduces to LCP x[k], as one would expect. [

We point out a fine detail about LCPy here: in SAIS, letters of S*-substrings are com-
pared first by character and then by type. For LCP construction, however, we must count
equal characters even though they may have different types. Consider two such suffixes that
both start with equal characters but different types. We can calculate their LCP by con-
sidering only the number of repetitions of the equal character. This is sufficient since if the
same character occurs with different types, then these differing types are defined by the next
differing character of each suffix, where one suffix is L and the other S, and obviously that
character must be different. Thus the LCP of the two considered suffixes is the minimum of
the two repetition counts. For occurrences within an S*-substring the repeating letters can
be counted directly. But, for cases where the equal sequence extends beyond the end of an
S*-substring, we save the repetition count of the overlapping character explicitly to handle
this case.

For example, regard the penultimate row on the right side of Figure 3. Even though
there are only 3 common characters in [acb] and its preceding S*-substring [acbba], for the
calculation in Lemma 2 to be correct, there must be a ‘4’ in LCP . This LCP-value can be
deduced from the repetition count ‘1’ of the shorter string [acb], which matches the second
‘D’ of the longer string [acbba).

Like the LCP calculation, the S*-substring sort order must be adapted to also encompass

the repetition count of the overlapping character. As before, overlapping L characters are
smaller than S characters. Of two overlapping L characters, the one with lower repetition
count is considered as smaller. Symmetrically, of two S characters, the one with higher
repetition count is smaller.

3.2 Finding Minima

To find the minimum value in LCP[i+1, j] or LCP[j +1,4] (steps (3') and (4') above), we
have several alternatives. Let us focus on the left-to-right scan (step (3')); the right-to-left
scan (step (4')) is symmetric. The simplest idea is to scan the whole interval in LCP; this
results in overall O(n?) running time. A better alternative would be to keep an array M
of size |3|, such that the minimum is always given by M|c] if we induce an LCP-value in
bucket ¢. More formally, we define the array M1, |X|] by M[c/] := min LCP[i.s +1, j], where
¢ €Y and i < j is the last position from where we induced to the ¢’-bucket. To keep M
up-to-date, before retrieving h = RMQ_cp,. (i + 1,) + 1 from M|c], we update all entries in
M that are larger than LCP[j] by LCP[j], since their corresponding range minimum queries
overlap with position j. Finally, we set M|[c] = 4o00; this ensures that in the next iteration
j + 1 the value M|c] will be set correctly. In total, this approach has O(n|X|) running time.
A further refinement of this technique stores the values in M in sorted order and uses binary
search on M to find the minima, similar to the stack used by Gog and Ohlebusch [2011].
This results in overall O(nlg|X|) running time.

Yet, we can also update the minima in O(1) amortized running time, as explained next.
Recall that the queries lie within a single bucket (called ¢’), and every bucket is subdivided
into an L- and an S-subbucket. The idea is to also subdivide the query into an L- and an
S-query, and return the minimum of the two. The S-queries are simple to handle: in step
(3"), only S*-suffixes will be scanned, and these are static. Hence, we can preprocess every
S*-subbucket (consisting of S*-suffixes starting with the same character) with a static data
structure for constant-time range minima, using overall linear space [Fischer, 2010, Thm. 1].
The L-queries are more difficult, as elements keep being written to them during the scan.
However, these updates occur in a very regular fashion, namely in a left-to-right manner.
This makes the problem simpler: we maintain a LRM-tree [Barbay et al., 2012, Def. 1]
M, for each bucket ¢/, which is initially empty (no L-suffixes written so far). When a new
L-suffix along with LCP-value ¢ 4 1 is written into its c-bucket, we climb up the rightmost
path of M, until we find an element = whose corresponding array-entry is strictly smaller
than £+ 1 (M, has an artificial root holding LCP-value —oo, which guarantees that such an
element always exists). The new element is then added as z’s new rightmost leaf; an easy
amortized argument shows that this results in overall linear time. Further, M. is stored
along with a data structure for constant-time lowest common ancestor queries (LCAs) which
supports dynamic leaf additions in O(1) worst-case time [Cole and Hariharan, 2005]. Then
the minimum in any range in the processed portion of the L-subbucket can be found in O(1)
time [Fischer, 2010, Lemma 2].

What we have described in the preceding paragraph was actually more general than
what we really needed: a solution to the semi-dynamic range minimum query problem
with constant O(1) query- and amortized O(1) insertion-time, with the restriction that new
elements can only be appended at the end (or beginning, respectively) of the array. Our
solution might also have interesting applications in other problems. In our setting, though,
the problem is slightly more specific: the sizes of the arrays to be prepared for RMQs are
known in advance (namely the sizes of the L- or S-subbuckets); hence, we can use any
of the (more practical) preprocessing-schemes for (static) RMQs in O(1) worst-case time
[Fischer and Heun, 2007; Alstrup et al., 2004], and update the respective structures, which

10

are essentially precomputed RMQs over suitably-sized blocks, whenever enough elements
have arrived.

3.3 Computing LCP-values at the L/S-Seam

There is one subtlety in the above inducing algorithm we have withheld so far, namely
that of computing the LCP-values between the last L-suffix and the first S-suffix in a given
c-bucket (we call this position the L /S-seam). More precisely, when reaching an L/S-seam in
step (3'), we have to re-compute the LCP-value between the first $*-suffix in the ¢-bucket (if
it exists) and the last L-suffix in the same c-bucket (the one that we just induced), in order
to induce correct LCP-values when stepping through the S*-suffixes in subsequent iterations.
Likewise, when placing the very first S-suffix in its c-bucket in step (4'), we need to compute
the LCP-value between this induced S-suffix and the largest L-suffix in the same c-bucket.
(Note that step (4) might place an S-suffix before all S*-suffixes, so we cannot necessarily
re-use the LCP-value computed at the L/S-seam in step (3').)

The following lemma shows that the LCP-computation at L/S-seams is particularly easy:

Lemma 3. Let T; be an L-suffiz, T; an S-suffiz, and t; = ¢ = t; (the suffizes are in the
same c-bucket in SA). Further, let £ > 1 denote the length of the longest common prefix of
T; and T;. Then

[ti e ti+g_1] = C£ = [tj ce tj+g_1] .

Proof. Assume that ¢;41 = ¢ = ¢4 for some 2 < k < ¢ and ¢’ # ¢. Then if ¢ < ¢, both T;
and T; are of type L, and otherwise (¢’ > ¢), they are both of type S. In any case, this is a
contradiction to the assumption that 7; is of type L, and 7} of type S. O

In words, the above lemma states that the longest common prefix at the L/S-seam can
only consist of equal characters. Therefore, a naive computation of the LCP-values at the
L/S-seam is sufficient to achieve overall linear running time in main memory: every character
t; contributes at most to the computation at the L/S-seam in the ¢;-bucket, and not in any
other c¢-bucket for ¢ # t;.

4 Induced Suffix Sorting in External Memory

We now design an EM algorithm based on the induced sorting principle that runs in
sorting complexity and has a lower constant factor than DC3 [Dementiev et al., 2008a]. The
basis for this algorithm is an efficient EM priority-queue (PQ) [Dementiev et al., 2008b],
as suggested by the proof of Lemma 1. Since it is derived from RAM-based SAIS, we call
our new algorithm eSAIS (FEzternal Suffizx Array construction by Induced Sorting). We first
comment on details of the pseudo-code shown as Algorithm 1, which is a simplified variant
of eSAIS. Section 4.1 is then devoted to complications that arise due to large S*-substrings.

Let R denote the reduced string consisting of lexicographic names of S*-suffixes. The
objective of lines 2-9 is to create the inverse suffix array ISAg, containing the ranks of all
S*-suffixes in T (corresponding to step (1) of the high-level algorithm in Section 2.1). In
line 2, the input is scanned back-to-front, and the type of each suffix 7 is determined from
ti, tiy1, and type(i + 1). Thereby, S*-suffixes are identified, and we assume there are K
S*-suffixes with K — 1 S*-substrings between them, plus the sentinel S*-substring. For each
S*-substring, the scan creates one tuple. These tuples are then sorted as described at the
end of Section 2.1 (note that the type of each character inside the tuple can be deduced
from the characters and the type of the overlapping character). After sorting, in line 3 the
S*-substring tuples are lexicographically named with respect to the S*-substring ordering,
and the output tuple array N is naturally ordered by names ny € [0, K). The names must be

N R

© w0 N O ook ®

10
11
12
13
14
15

16
17

11

ALGORITHM 1: eSAIS description in tuple pseudo-code

eSAIS(T = [to...tn—1]) begin
Scan T back-to-front, create [(sy) | k € [0, K)] for K S8"-suffixes, and sort S*-substrings:

P :=Sorts«[([t: ... t;], 4, type(5)) | (4,7) = (sk, Sks1), k € [0, K)] // with s3c :==n—1
N = [(ng,1)] := Lexnameg~ (P) // choose lexnames ny, € [0, K) for S*-substrings
R := [ni | (nk,) € Sort(N by second component) | // sort lexnames back to string order
if the lexnames in N are not unique then

SAR := eSAIS(R) // recursion with |R| < %

ISAg := 1k | (k,7k) € Sort[(SAr[k], k) | k € [0,K)]] // invert permutation
else // (Sort sorts lexicographically unless stated otherwise.)

L ISAR := R // ISAR has been generated directly

S* = [(t;,8,ISAR[K], [tj—1-.-t:],7) | (4,7) = (si_1,5%), k € [0, K)] // with s*1 =0

pr =0, Qr := CreatePQ(S™ by (t;,y, 7, [ti—1...ti—e],1))

while (t;,y,7, [ti—1...ti—s],4) = Qr.extractMin() do // induce from next 8- or L-suffiz
if y =L then Ay.append((t;,1i)) // save i as next L-type in SA
if t;_1 > t; then QL,insert(tifl,L pr++, [tifg c. ti—ﬁ], i — 1) // T; 1 1is L-type?
else L*.append((¢, L, pr++, [ti—1...ti—e], 1)) // Ti—1 is S-type

Repeat lines 11-15 and construct Ag from L* array with inverted PQ order and pgs--.
return [i | (¢,7) € Merge((¢:,i) € AL and (¢;,7) € As.reverse() by first component)]

sorted back to string order in line 4. This yields the reduced string R, wherein each character
represents one S*-substring. If the lexicographic names are unique, the lexicographic ranks
of S*-substrings are simply the names in R (lines 8-9). Otherwise the ranks are calculated
recursively by calling eSAIS and inverting SAg (lines 5-7).

With ISAg containing the ranks of S*-suffixes, we apply Lemma 1 in lines 10-15. The
PQ contains quintuples (t;,y,7, [ti—1,...,ti—¢,i) with (¢;,y,7) being the sort key, which is
composed of character t;, indicator y = type(i) with L < 8 and relative rank r of suffix T; ;.
To efficiently implement Lemma 1, instead of checking all unsorted L-suffixes, we design the
PQ to create the relative order of S*- and L-suffixes as described in the proof. Extraction
from the PQ always yields the smallest unsorted L-suffix, or, if all L-suffixes within a c-
bucket are sorted, the smallest S*-suffix 4 with unsorted preceding L-suffix at position i — 1
(hence t;—1 > ¢). Thus diverging slightly from the proof, the PQ only contains L-suffixes
T; where T;y; is already ordered, plus all S*-suffixes where 7;_; has not been ordered; so
at any time the PQ contains at most K items. In line 11, the PQ is initialized with the
array S*, which is built in line 10 by reading the input back-to-front again, re-identifying
S*-suffixes and merging with ISAg to get the rank for each tuple. Notice that the characters
of S*-substrings are saved in reverse order. The while loop in lines 12-15 then repeatedly
removes the minimum item and assigns it the next relative rank as enumerated by py; this
is the inducing process. If the extracted tuple represents an L-suffix, the suffix position ¢ is
saved in Ay, as the next L-suffix in the ¢;-bucket (line 13). Extracted S*-suffixes do not have
an output. If the preceding suffix T;_1 is L-type, then we shorten the tuple by one character
to represent this suffix, and reinsert the tuple with its relative rank (line 14). However, if
the preceding suffix T;_; is S-type, then the suffix T; is L*-type, and it must be saved for
the inducing of S-suffixes (line 15). When the PQ is empty, all L-suffixes are sorted in Ay,
and L* contains all L*-suffixes ranked by their lexicographic order.

With the array L* the while loop is repeated to sort all S-suffixes (line 16). This process
is symmetric with the PQ order being reversed and using pg-- instead of incrementing. If
t;—1 > t; occurs, the tuple can be dropped, because there is no need to recreate the array
S* (as all L-suffixes are already sorted). When both A; and Ag are computed, the suffix

12

array can be constructed by merging together the L- and S-subsequences bucket-wise (line
17). Ag has to be reversed first, because the S-suffix order is generated largest to smallest.
Note that in this formulation the alphabet ¥ is only used for comparison.

4.1 Splitting Large Tuples

After the detailed description of Algorithm 1, we must point out two issues that occur
in the EM setting. While S*-substrings are usually very short, at least three characters long
and on average four, in pathological cases they can encompass nearly the whole string. Thus
in line 2-3 of Algorithm 1, the tuples would grow larger than an I/O block B, and one would
have to resort to long string sorting [Arge et al., 1997]. More importantly, in the special
case of [$] being the only S*-suffix, the while-loop in lines 12-15 inserts % characters,
which leads to quadratic I/O volume. Both issues are due to long S*-substrings, but we will
deal with them differently, once splitting S*-substrings from their beginning and the second
time from their end.

Long string sorting in EM can be dealt with using lexicographic naming and doubling
[Arge et al., 1997, Section 4]. However, instead of explicitly sorting long strings, we integrate
the doubling procedure into the suffix sorting recursion and ultimately only need to sort short
strings in line 2 of Algorithm 1. This is done by dividing the S*-substrings into split substrings
of length at most B, starting at their beginning, and lexicographically naming them along
with all other substrings. Thereby, a long S*-substring is represented by a sequence of
lexicographic names in the reduced string. The corresponding split tuples are formed in
the same way as S*-substring tuples in P, they also overlap by one character, except that
the overlapping character need not be S*-type. Thus split tuples are distinct from ordinary
S*-substrings and the recursive super-alphabet ¥ = (X x {L,8})* (each character of the
reduced string corresponds to a split substring, within which each character has a letter and
a type). After the recursive call, long S*-substrings are correctly ordered among all other
S*-substrings due to suffix sorting, and split tuples can easily be discarded in line 10 as
they do not correspond to any S*-suffix. The d-critical version of SAIS [Nong et al., 2011,
Section 4] is a similar approach.

The second issue arises due to repeated re-insertions of payload characters into the PQ
in line 14, possibly incurring quadratic I/O volume. Our solution is to place a limit on the
number of characters stored in the PQ, and fetch additional characters when needed. Since
the characters in the PQ tuples are ordered in reverse, we must again split S*-substrings,
but this time from their end. We call the items containing the last Dy characters of an
S*-substring the seed tuples, and all items containing additional (up to D) characters con-
tinuation tuples. When the currently processed PQ tuple requires additional characters, we
say it underruns.

The challenge in EM is to have the additional characters readily available when needed,
since we cannot spend an I/O to fetch each continuation tuple. We solve this by noting that
we can predict when a continuation tuple is required. The additional characters are needed
exactly at the boundaries between repetition buckets (see Section 2.1 for the definition of
repetition buckets). To understand this, consider what happens when a tuple underruns.
The point is that we need not fetch the missing characters immediately, since the earliest
output position which may change due to the additional characters lies in the next repetition
bucket. This occurs when the characters in the continuation tuple themselves induce into the
current bucket. Thus we can postpone matching of continuation tuples to underrun tuples
to the boundaries between repetition buckets. We have thus established time points when
underrun tuples must be matched, however, this also implies which tuples are matched at
these boundaries. We can thus pre-sort the set of continuation tuples by repetition bucket

0 N O A W

©

10
11
12
13
14
15
16

17
18

13

ALGORITHM 2: Inducing step with S*-substrings split by Do and D, replacing lines 10-15 of
Algorithm 1

D:={s;,—Do—v-D|veN sy —Dy—v-D>s;_q,k€[0,K)} // split positions, with s*; =0
S* = Sort[(tj, |SAR[M, [tjfl .. .ti],j, ILiED) | j=sg, 1= max(sz,l,j - Do), ke [0, K)]
L := Sort[(t;,rep(j), J, [tj—1 ... ti], Liep) | j € D, i = max(sg_,,j — D), t; is L-type]
S := Sort[(¢, rep(y), 4, [tj—1 ... ti), Liep) | j € D, i = max(s;_,j — D), t; is S-type]
pr =0, a:=1, r,=0, S*:=Stack(S"), Qr := CreatePQ(} by (¢, [ti—1-..ti—e],%,¢))
while Qr.NotEmpty() or S*.NotEmpty() do
while Qr.Empty() or ¢t < Qr.TopChar() with (¢,7, [ti—1...ti—¢],4,¢) = S*.Top() do
L Qr.insert(ti—1, pr++,[ti—2 ... ti—¢],i — 1,¢), S*.Pop() // induce from S*-suffizes
a' :=a, a:= Q. TopChar(), 7¢ := (T + 1)Lar=a, m = pr, M := 0 // next a-repetition bucket
while Q1. TopChar() = @ and Qr.TopRank() < m do // induce from L-suffizes
(tiyr [tic1...tize],4,¢) = Qr.extractMin(), Agr.append((t;,i)) // save i as next L-type
if £> 0 then
if t;_1 > ¢; then Qp.insert(ti—1, pr++, [ti—2...ti—¢],2 — 1,¢) // Ti—1 is L-type
else L".append((t;, pr++, [ti—1...ti—¢],%,¢)) // Ti—1 is S-type
else if / =0 and ¢ = 1 then M.append(i, pr++,) // need continuation?
foreach Merge([(a,Ta,,7) | (¢,7) € Sort(M)] with (a,7q,%, [ti—1,-..,ti—¢],c) € L) do
if t,-1 > t; then Qr.insert(t;—1,7, [ti—2...ti—¢],i — 1,¢) // Ti—1 is L-type
else L*.append((a,r, [ti—1...ti—d],%,¢)) // Ti—1 is S-type

(and text position) and have them readily available for merging with underrun tuples.

This procedure is the key idea of Algorithm 2, which replaces lines 10-15 of Algorithm 1
and which we describe in the following. Let D be the set of splitting positions, counting
first Dy and then D characters backwards starting at each S*-suffix until the preceding S*-
suffix is met (Do > D indicates when to split at all, and D > 1 being the split length of
continuation tuples). As before, for each S*-substring a seed tuple is stored in the S* array,
except that only the initial Dy payload characters are copied. If an S*-substring consists of
more than Dy characters, a continuation tuple is stored in one of the two new arrays L or S
in lines 3-4, depending on the type of its overlapping character. This overlapping character
t; will later be used together with its repetition count rep(i) to efficiently match continuation
tuples with preceding tuples at repetition bucket boundaries; rep(4) is easily calculated while
reading the text back-to-front. Along with both seed and continuation tuples we save a flag
1,;ep marking whether a continuation exists.

With these different sources of characters pre-computed, we have to break up the elegant
while loop of Algorithm 1 into three separate phases: (1) inducing from S*-suffixes in lines 7—
8, (2) inducing from L-suffixes in lines 10-15, and (3) finding continuation tuples for underrun
PQ items in lines 16-18. Since we must match continuation tuples at each repetition bucket
boundary, one iteration of the large while loop (lines 6-18) is designed to induce all items
of one repetition bucket. An additional difference from Algorithm 1 is that in line 5 the PQ
is initialized as empty and S* will be processed as a stack.

More details of Algorithm 2 are described next. The two induction sources, the S*
and L arrays, are alternated between, with precedence depending on their top character:
Qr.TopChar() := t; with (¢;,r,7,i,¢) = Qr.Top(). Since L-suffixes are smaller than S*-
suffixes if they start with the same character, the while loop in 7-8 may only induce from
S*-suffixes with the first character being smaller than @j,.TopChar(); otherwise, the while
loop in 10-15 has precedence. When line 9 is reached, the loop in 10-15 extracts all suffixes
from the PQ starting with a, after which the S* stack must be checked again. In lines

14

Fill of Priority Queues and Arrays

1.2

0.8

T

T

0.6

T

0.4

Billion items in queue or array

0.2

T

Program execution time [h]

Figure 4: The graph shows the number of items in the six main data structures used in Algorithm 1,
plotted over the program execution time of one run of our eSAIS implementation on 4 GiB of
Wikipedia input.

11-14 the extracted tuple is handled as in Algorithm 1, however, when there is no preceding
character ¢;_1 in the tuple and the continuation flag c is set, the tuple underruns and the
matching continuation must be found. For each underrun tuple, the required position 4
and its assigned rank pjy, is saved in the buffer M, which will be sorted and merged with
the L array in line 16. Matching of the continuation tuple can be postponed up to the
smallest rank at which a continued tuple may be reinserted into the PQ. This earliest rank
ism = pr, as set in line 9, because any reinsertion will have r > pr, and thus the while loop
10-15 extracts exactly the r,-th repetition bucket of a. Because continuation tuples must
only be matched exactly once per repetition bucket, the continuation tuples are sorted by
(tj,rep(j), s), whereby L can be sequentially merged with M if M is kept sorted by the first
component and L scanned as a stack.

In Section 5 we compute the optimal values for Dy and D, and analyze the resulting I/O
volume.

4.2 Fill of Priority Queues and Arrays in an Example Program Run

In this section we give a visual insight into the eSAIS algorithm using the example of the
plot in Figure 4. The graph shows the number of items contained in the two PQs and the
most important four arrays for an example run of our eSAIS implementation on 4 GiB of
Wikipedia XML (see Section 7 for details on the implementation, input, and experimental
setup).

One can see the unwinding of four recursive levels, each composed of the inducing process
described in Algorithm 1, lines 10-16, and augmented by Algorithm 2. In the first phase
(lines 14 of Algorithm 2), the arrays S*, L and S are simultaneously constructed by reading
the input and the recursively calculated ISAr. Thereafter, the while-loop in lines 6-18 runs
until both @ and S* are empty. In this phase, all L-suffixes are ordered. The array L

15

et oeiietbelielilieieli ettt il ST T T TTTTTTTooooos [[
. Algorithm 1 Algorithm 2 while-loop

Lexname Recursion

SAT
T
file D streaming sorting
node node node

|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
L

Figure 5: Data flow graph of the algorithm; numbers refer to the line numbers of Algorithm 1 and
Algorithm 2, respectively. The input T is read and saved to a file (2), while creating tuples. Sorting
these tuples yields P, whose entries are lexicographically named in N (3) and sorted again by string
index, resulting in R (4). If names are not unique in R, the algorithm calls itself recursively (6) to
calculate SAr. The suffix array is inverted into ISAg (7) and resulting ranks are merged with T' to
create seed and continuation tuples (10), which are distributed into sorters (2,3,4) in Algorithm 2.
The main while-loop (6-15) reads from array S* and priority-queue Q. Depending on the calcu-
lation, the while-loop outputs final L-suffix order information into Ay, stores merge requests to M
when tuples underrun, reinserts a shortened tuple in Qr, or saves L*-tuples. Merge requests are
handled by matching tuples from M and L (16-18), and reinserting into Qr. When the while-loop
for inducing L-suffixes finishes, the process is repeated with seed tuples from L* and continuation
tuples from S, yielding the final S-suffix order values in As. The output suffix array is constructed
by merging A and Ag (17).

contains continuation tuples for tuples that underrun when processing @y, thus L is fully
consumed when @y, is empty. While processing L-suffixes, the while-loop outputs the array
L* in line 14. These tuples are the seeds for the symmetric while-loop, which orders all
S-suffixes using Qs and consuming S.

Notice that the peak fill of arrays S* and L* is the same. This corresponds to the number
of S*-substrings, as each substring contains exactly one S*- and one L*-character, except for
the first and last. The irregular fill of @7, and Qg is due to the particular real-world input. It
shows an uneven distribution of the ASCII characters in the English text: the short plateaus
in @ and (g are probably due to the large number of spaces.

5 I/0 Analysis of eSAIS with Split Tuples

We now analyze the overall I/O performance of our algorithm and find the best splitting
parameters Dy and D under practical assumptions. We will focus on calculating the I/0O
volume processed by Sort in lines 2-4 and 16, and by the PQs.

For simplicity, we assume that there is only one elemental data type, disregarding the
fact that characters can be smaller than indices, for instance. Thus a tuple is composed
of multiple elements of equal size. We write SORT(n) or SCAN(n) as the number of I/Os
needed to sort or scan an array of n elements. Furthermore, we also assume that the PQ has
amortized I/O complexity SORT(n) for sorting n elements, an assumption that is supported
by preliminary experiments.

For our practical experiments we assume M < n < M?Q, and thus can relate SORT(n) =
2ScAaN(n), which is equivalent to saying that n elements can be sorted with one in-memory
merge step. With parameters M = 230 (1 GiB) and B = 2!° (1 MiB), as used in our exper-
iments, up to 2°° (1 PiB) elements can be sorted under this assumption. This assumption
will be used in the following analysis only once, when a relation between SORT and SCAN is
required to calculate a practical value for D and Dy.

16

In the analysis we denote the length of S*-substrings excluding the overlapping character,
thus the sum of their lengths is the string length. The overlapping character is counted
separately. For further simplicity, we assume that line 15 of Algorithm 2 always stores
continuation requests in M, and unmatched requests are later discarded. Thus our analysis
can ignore the boolean continuation variables.

For a broader view of the algorithm, we abstracted Algorithm 1 (including Algorithm 2)
into a pipelined data flow graph in Figure 5.

Lemma 4. To minimize I/O cost Algorithm 2 should use D = 3 and Dy = 8 for splitting
S*-strings, when n < Mfz.

Proof. We first focus on the number of elements sorted and scanned by the algorithm for
one long S*-substring of length ¢ = kD for k£ € N; when splitting by period D and set
Dy := D. In this proof we count amortized costs SORT(1) per element sorted and SCAN(1)
per element scanned. This is possible, as all 7 S*-substrings are processed by the algorithm
sequentially.

For one S*-substring the algorithm incurs SORT(D + 3) for sorting S* (line 2) and
SORT((4 — 1) - (D + 3)) for sorting L and S (lines 3-4). In Q. and Qs a total of
SORT(%(%D(D + 1)) + £ - 3) occurs due to repeated reinsertions into the PQs with de-
creasing lengths. The buffer M (line 16) requires at most SORT((45 — 1) - 2), while reading
from L and S is already accounted for. Additionally, at most SCAN((D—1) + 3) occurs when
switching from @ to Qg via L*, as at least the first S-character was removed. Overall, this
is SORT(5(3D? + §D + 5) — 2) + SCAN(D + 2), which is minimized for D = /10 ~ 3.16,
when assuming SORT = 2ScAN. Taking D = 3, we get at most SORT(22/ — 3) + SCAN(5)
per S*-substring.

Next, we determine the value of Dy (as the length at when to start splitting by D). This
offset is due to the base overhead of using continuations over just reinserting into the PQ.
Given an S*-substring of length ¢, repeated reinsertions without continuations would incur
SORT(3£(¢ + 1) + £ 3). By putting this quadratic cost in relation to the one with splitting
by D = 3, we get that at length ¢ ~ 7.7 the cost in both approaches is balanced. Therefore,
we choose to start splitting at Dy = 8. O

Theorem 1. For a string of length n the I/0 volume of Algorithm 1 is bounded by SORT(17n)
+ SCAN(9n), when splitting with D = 3 and Dy = 8 in Algorithm 2.

Proof. To bound the I/O volume, we consider a string that consists of 7 S*-substrings of
length ¢, and determine the maximum volume over all 2 < ¢ < n, where £ = 2 is the smallest
possible length of S*-substrings, due to exclusion of the overlapping character. Algorithm 1
needs SCAN(2n) to read T' twice (in lines 2 and 10) and SORT(n + % - 2) to construct P
in line 2, counting the overlapping character and excluding the boolean type, which can
be encoded into . In this SORT the I/O volume of Lexnameg- is already accounted for.
Creating the reduced string R requires sorting of N, and thus SORT(2 -) I/Os. Then the
suffix array of the reduced string R with |R| < 7 is computed recursively and inverted using
SORT(2-), or the names are already unique. After creating ISAg, Algorithm 2 is used with
the parameters derived in Lemma 4, incurring the amortized I/O cost calculated there for
all 7 8*-substrings. The final merging of Ay and Ag (line 17) needs SCAN(2n). In sum this
is

V(n) < SCAN(2n) + SORT(n + % - 2) + SORT(% - 2) + V(%)
+ SORT(% - 2) + SCAN(2n) + % - min{SoRrT(%¢ — 3) + Scan(5),
SORT(34(¢+ 1)+ £-3) + Scan(¥)}.

© 0 N O ok W N

-
[=]

17

ALGORITHM 3: EM calculation of the longest common prefix array of S*-suffixes.

SALCPR := eSAIS-LCP(R) and ISAg calculated from SAgr
Q1 := Sort[(SARr[k] — 1,k), (SAR[k] + LCPR[Ek] — 1, k) | // range sum over Sizegx
(SAR[k’}, LCPR[IC]) € SALCPr with LCPRUC] > O]

Ay :=Sort[(k, Y ;_, Sizes=[i]) | Merge((s, k) € Q1 and (s,» > Sizes~|[i]) € PrefixSum(Sizes~))]
Q2 := Sort[(SAr[k—1] + LCPRrIk], k), (SARr[k] + LCPr[k],k) | // batched random access on ISAr
((SARr[k—1],LCPR[k—1]), (SAR[K],LCPR[K])) = (SALCPR[k—1], SALCPRI[K])]

A := Sort[(k, ISAR[p]) | Merge((p, k) € Q2 and (p,ISARr[p]) € ISAR)]

Qs 1= [RMQUE+ 1,1, k) | (5, 0), (k,) = (As[i], Asfi +1]) |

Asz = [(k,RMQ_cp, (£,7)] = AnswerRMQ(Qs,LCPy)

LCPg+ :=[(s2 — s1) + m | Merge((k, s1) = A1[i], (k,s2) = A1[i + 1] and (k,m) = As[j])]

// RMQs on LCPy

Maximizing V(n,£) for 2 < ¢ < n by £ = 2, we get V(n,¢) < V(n,2) < SORT(8.5n) +
SCAN(4.5n) + V(%) and, solving the recurrence, V(n,f) < SORT(17n) + SCAN(9n). In
Section 7 a worst-case string is constructed with S*-substrings of length ¢ = 2 on every
recursive level. O

The proof of Theorem 1 does not need to assume n < M?Q, since we take D and Dy
as fixed parameters independent of n. These D and Dy give minimal I/O cost under our
practical assumptions, yet Theorem 1 holds whether of not these parameters are optimal.

6 Inducing the LCP Array in External Memory

In this section we describe the first practical algorithm that calculates the LCP array
in external memory. The general method of integrating LCP construction into SAIS has
already been described in Section 3; here, we adapt it to work in external memory.

6.1 Calculating LCP g~

The pseudo-code is shown in Algorithm 3, where @Q1,Q2, Q3 are sets of queries, and
Ay, Ag, As their respective answers. Line 1 recursively calculates SAg and LCPg. According
to Lemma 2, two subproblems must be solved efficiently in external memory: range sums
over Sizeg~ (lines 2-4), and range minimum queries over LCPy (line 5-9). The first is
solved by preparing query tuples for the sum boundaries and then performing a prefix-sum
scan on Sizeg~. In more detail, from two consecutive entries, prepare two range sum query
tuples (SAg[k] —1,k), (SAg[k]+LCPg[k] — 1, k), sort these by first component, and perform
a prefix-sum scan on LCPy, which delivers Zzi’g[k]_l LCPy and Zzi%[kHLCPR[k]_l LCPy,
from which the range sum is easily calculated.

For the static range minimum queries in LCPy, we follow a common RAM-technique
[Fischer and Heun, 2011]: we precompute O(n) potential subqueries by a scan of LCPy,
and store them on disk. The actual queries are divided into three subqueries, sorted, and
merged with the precomputed queries (first by left, then by right query end). A final sort
by query IDs brings the answers to subqueries back together. This technique was already
sketched in the DC3 algorithm [Kérkk&inen et al., 2006].

6.2 Computing LCPs by Finding Minima

The RMQs from Section 3.2 delivering the LCP values are created in batch while inducing
SA and answered afterwards, forming the LCP array. This is possible, as the indexes i and j
in RMQLcp, (i+1,j)+1 are the relative ranks ‘pz’ of two consecutively extracted tuples from

18

the PQ @ (and symmetrically for the second phase). Notice that the first while-loop in
Algorithm 1 orders only the L-suffixes in SA. Likewise, the batch process computes only all
LCP-values of L-type suffixes. The corresponding RMQs are calculated on a virtual array,
denoted by LCPr|qg, , which interleaves the entries of LCPg+ with LCP-values of L-suffixes
bucket-wise, and is indexed by the relative rank py,.

As we saw in Section 3.2, solving the RMQs on LCPr|g, is in fact a semi-dynamic
problem. To solve it, we decided not to explore which of the well known EM data structures
such as buffer trees [Arge, 2003] are suitable for solving this task within sorting complexity.
Instead, we made the highly realistic assumption that the main memory size M is large
enough such that % = O(M); or, more precisely, n < C'- M? for some small constant C
(with one GiB of main memory and C = 1/4 as in our implementation this means we can
handle problems of size n < 2°%, almost one Exabyte). This assumption is more lax than
the one used in Section 5.

Under this assumption we can split the array LCPr|g, into blocks of size s :== C'- M and
keep the LCPp|g, -values of the current block in main memory. Further, we can keep the
minima of all O(n/M) = O(M) previous blocks in RAM. We build succinct semi-dynamic
RAM-based RMQ-structures over both arrays, as in Section 3.2. Then every range minimum
query can be split into three subqueries: the first and last subquery being contained in a block
of size s, and the middle (possibly large) subquery perfectly aligning with block boundaries
on both ends. The former two subqueries are answered when the block is held in RAM,
while the latter subquery is answered when the last block it contains has been processed.
This takes overall O(n) time and O(n/B) I/Os.

We made some additional optimizations for cases where LCPr|g, -values can be induced
without range minimum queries. One interesting case is related to the repetition counts:
consider among all L-suffixes in a c-bucket (¢ € X) the first suffixes starting with ¢, cc, cce,
etc. Their LCP-values are 0,1,2, etc., which is exactly their repetition count. The current
repetition count, however, is the readily-available variable ‘r,” when extracting from the PQ),
and thus the LCP can be set immediately without any RMQ. This optimization turned out
to be very effective for highly repetitive texts.

Finally, we note that we have also implemented a completely in-memory version of RMQs
that relies on the fact that only the right-to-left minima (looking left from the current
position i) are candidates for the minima. Except for pathological inputs there are only
O(M) such right-to-left minima, because the minimum at each bucket boundary is zero.
Therefore they all fit in RAM and can be searched in a binary manner or using more
involved heuristics (see Section 3.2).

As already discussed in Section 3.3, the LCP-value at the L/S-seam requires special
consideration. For handling the seam in EM we reapply Lemma 3 in a different manner:
for each c-bucket we save the maximum repetition count in the L-subbucket during the
first while-loop. Then, when inducing S-suffixes in the symmetric while-loop, the L/S-seam
LCP-value can be determined from the maximum repetition count in L- and S-subbucket.
As suggested by Lemma 3, the true value is the smaller of both repetition counts.

7 Experimental Evaluation

We implemented the eSAIS algorithm with integrated LCP construction in C++ using
the external memory library STXXL [Dementiev et al., 2008b]. This library provides efficient
external memory sorting and a priority queue that is modeled after the design for cached
memory [Sanders, 2000]. Note that in STXXL all I/O operations bypass the operating
system cache; therefore the experimental results are not influenced by system cache behavior.
Our implementation and selected input files are available from http://tbingmann.de/2012/

http://tbingmann.de/2012/esais/
http://tbingmann.de/2012/esais/

19

esais/.

Before describing the experiments, we highlight some details of the implementation.
Most notably, STXXL does not support variable length structures, nor are we aware of a
library with PQ that does. Therefore, in the implementation the tuples in the PQ and
the associated arrays are of fixed length, and superfluous I/O transfer volume occurs. Due
to fixed length structures, the results from the I/O analysis for the tuning parameter D
does not directly apply. We found that D = Dy = 3 are good splitting values in practice,
which match the theoretical average S*-substring length. All results of the algorithms were
verified using a suffix array checker [Dementiev et al., 2008a, Section 8] and a semi-external
version of Kasai’s LCP algorithm [Kasai et al., 2001] (when possible). We designed the
implementation to use an implicit sentinel instead of ‘$,” so that input containing zero bytes
can be suffix sorted as well. Since our goal was to sort large inputs, the implementation
can use different data types for array positions: usual 32-bit integers and a special 40-bit
data type stored in five bytes. The input data type is also variable, we only experimented
with usual 8-bit inputs, but the recursive levels work internally with the 32/40-bit data
type. When sorting ASCII strings in memory, an efficient in-place radix sort [Karkkdinen
and Rantala, 2009] is used. Strings of larger data types are sorted in RAM using gcc-4.4
STL’s version of introsort. The initial sort of short strings into P was implemented using a
variable length tuple sorter.

We chose a wide variety of large inputs, both artificial and from real-world applications:

Wikipedia is an XML dump of the most recent version of all pages in the English
Wikipedia, which was obtained from http://dumps.wikimedia.org/; our dump is dated
enwiki-20120601.

Gutenberg is a concatenation of all ASCII text document files from http://www.
gutenberg.org/robot/harvest as available in September 2012. The Gutenberg data contains
a version of the human genome as a sub-string.

Human Genome consists of all DNA files from the UCSC human genome assembly
“hgl9” downloadable from http://genome.ucsc.edu/. The files were normalized to upper-
case and stripped of all characters but {A,G,C, T,N}. Note that this input contains very long
sequences of unknown N placeholders, which influences the LCPs.

Pi are the decimals of m, written as ASCII digits and starting with “3.1415.

Skyline is an artificial string for which eSAIS has maximum recursion depth. To achieve
this, the string’s suffixes must have type sequence LSLS. ..LS at each level of recursion. Such
a string can be constructed for a length n = 2P, p > 1, using the alphabet ¥ = [$,01,...,0,]
and the grammar {S — T1$, T; = Tj410,T;41 fori=1,...,p—1and T, —» o,}. For p=4
and ¥ = [$,a,b,c,d], we get dcdbdcdadcdbdcd$; for the test runs we replaced $ with
9. The name “Skyline” comes from the corresponding height diagram, which looks like a
metropolitan skyline when drawn with smallest character on top.

The input Skyline is generated depending on the experiment size, all other inputs are
cut to size. The inputs are available from the same URL as our implementation’s source
code.

Our main experimental platform A was a cluster computer, with one node exclusively
allocated when running a test instance. The nodes have an Intel Xeon X5355 processor
clocked with 2.66 GHz and 4 MiB of level 2 cache. In all tests only one core of the pro-
cessor is used. Each node has 850 GiB of available disk space striped with RAID 0 across
four local disks of size 250 GiB; the rest is reserved by the system. All four are “Sea-
gate Barracuda 7200.10 ST3250820AS” disks. A single disk’s write and read throughput
ranges between 80 MiB/s on the outside and 72 MiB/s on the inside. Parallel I/O speed to
the four disks ranges between 320 MiB/s and 240 MiB/s, and was measured using STXXL’s
benchmark_ disks tool. We limited the main memory usage of the algorithms to 1 GiB of

http://tbingmann.de/2012/esais/
http://tbingmann.de/2012/esais/
http://dumps.wikimedia.org/
http://www.gutenberg.org/robot/harvest
http://www.gutenberg.org/robot/harvest
http://genome.ucsc.edu/

20

RAM, and used a block size of 1 MiB. The block size was optimized in preliminary experi-
ments.

Due to the limited local disk space in the cluster computer, we chose to run some ad-
ditional, larger experiments on platform B: an Intel Xeon X5550 processor clocked with
2.66 GHz and 8 MiB of level 2 cache. The main memory usage was limited to 4 GiB RAM,
we kept the block size at 1 MiB and up to seven local SATA disk with 1 TB of local space
were available. The disks were labeled “Seagate SV35.5 ST31000525SV” and an individual
disk’s throughput ranged from 110 MiB/s to 90 MiB/s. All disks together reached at most
520 MiB/s and on average 450.0 MiB/s when writing 4 TiB of data.

Programs on both platforms were compiled using g++ 4.4.6 with -O3 and native archi-
tecture optimization.

7.1 Plain Suffix Array Construction

As noted in the introduction, the previously fastest EM suffix sorter is DC3 [Demen-
tiev et al., 2008a]. We adapted and optimized the original source code!, which is already
implemented using STXXL, to our current setup and larger data types. An implementa-
tion of DCT exists that is reported to be about 20% faster in the special case of human
DNA [Weese, 2006], but we did not include it in our experiments. We also report on some
results of bwtdisk [Ferragina et al., 2012], even though it generates the BWT instead of the
suffix array.

Figure 6 shows the construction time and I/O volume of eSAIS, DC3 and bwtdisk on
platform A using 32-bit keys. The three algorithms eSAIS (open bullets, solid lines), DC3
(filled bullets, dashed lines), and bwtdisk (open bullets, dotted lines) were run on prefixes
T[0,2%) of all five inputs, with only Skyline being generated specifically for each size. In
total the plots of eSAIS and DC3 took 3.2 computing days and over 16.8 TiB of I/O volume,
which is why only one run was performed for each of the 90 test instances. The bwtdisk
experiments were run only once.

For all real-world inputs eSAIS’s construction time is about half of DC3’s. The I/0
volume required by eSAIS is also only about 60% of the volume of DC3. The two artificial
inputs exhibit the extreme results they were designed to provoke: Pi is random input with
short LCPs, which is an easy case for DC3. Nevertheless, eSAIS is still faster, but not
twice as fast. The results from eSAIS’s worst-case Skyline show another extreme: eSAIS
has highest construction time on its worst input, whereas DC3 is moderately fast because
Skyline can efficiently be sorted by triples. The high I/O volume of eSAIS for Skyline is due
to its maximum recursion depth, reducing the string only by % and filling the PQ with %
items on each level (see Figure 7 (a)). The PQ implementation requires more I/O volume
than sorting, because it recursively combines short runs to keep the arity of mergers in main
memory small. Even though DC3 reduces by %, the recursion depth is limited by log; n and
sorting is more straightforward.

We configured bwtdisk to also use 1 GiB of main memory on platform A. Thus bwtdisk
can suffix sort quite large chunks in internal memory, and behaves like its in-memory suffix
sorter (divsufsort) for small input sizes. But once the input does not fit into memory, multiple
chunks are merged and this merging causes the high increase in construction time seen in
Figure 6. This is probably due to bwtdisk’s theoretical 1/O complexity, O(n?/(M B)), and
quadratic CPU time, O(n?/M) [Ferragina et al., 2012]. We could not measure the required
I/0 volume of bwtdisk, and the program does not output such statistics. The main feature

Lhttp://algo2.iti.kit.edu/dementiev/esuffix/docu/

http://algo2.iti.kit.edu/dementiev/esuffix/docu/

21

(a) Construction Time

S

MiB]

Time per input |
w
T

21 §
Input size n [B]
(b) I/O Volume

g
B
&
z
< 300 |
o
=
o
k=
—
g 200p 8
()
=
E
E
o 100 3
} il il

224 256 258 2;’)0 232

Input size n [B]

(¢) Input Characteristics

Plot Input |T| ||
—— Wikipedia XML 79479 MiB 213
—— Gutenberg Text 22975 MiB 256
—s— Human Genome 2992 MiB 5
—v— Decimals of pi 00 11
—e— Skyline (worst-case) oo |logym|

—— eSAIS -+-DC3 o bwtdisk
(all inputs)

Figure 6: The two plots show (a) construction time and (b) I/O volume of eSAIS (open bul-
lets, solid lines), DC3 (filled bullets, dashed lines), and bwtdisk (open bullets, dotted lines) on
experimental platform A. The table (c) shows selected characteristics of the input strings.

22

(a) Recursion Depth (b) Average LCP

30 [T T T T T] 109 [T T]
= 201 >-o-"* i %D

% -~ — 105 . N
a &
10 | 1 &

A M
ol | w0 |
224 226 228 230 232 225 230 235
Input size n [B] Input size n [B]

Figure 7: Plot (a) shows the maximum recursion depth reached by eSAIS and DC3 during the
experiments on platform A (running with 40-bit positions). Subfigure (b) contains the average LCP
of increasing 2" slices of the inputs, calculated using eSAIS-LCP.

of bwtdisk is that it needs only very little additional disk space, which is why the authors
call it “lightweight”.

Besides the basic eSAIS algorithm, we also implemented a variant which “discards” se-
quences of multiple unique names from the reduced string prior to recursion, similar to
Dementiev et al. [2008a] and Puglisi et al. [2005]. However, we discovered that this opti-
mization has much smaller effect in eSAIS than in other suffix sorters (see Figure 8 (a)-(d)).
This is probably due to the induced sorting algorithm already adapting very efficiently to
the input string’s characteristics.

7.2 Suffix and LCP Array Construction

We implemented two variants of LCP construction: one solving RMQs in EM (LCPext),
and the other entirely in RAM (LCPint). The EM solution saves RMQs to disk during the
inducing process, and constructs the LCP array from these queries after the SA was com-
pleted. Contrarily, the RAM solution precalculates the LCP for each induced position from
an in-memory structure and saves the LCP in the PQ. Thus the LCP array is constructed at
the same time as the SA (when extracting from the PQ). The size of the in-memory RMQ
structure is related to the maximum LCP and the number of different inducing targets
within one bucket, and grows up to 300 MiB for the Human Genome. The in-memory RMQ
construction also requires the preceding character ¢;_; to be available when processing the
while loop, a restriction that requires an overlap of two characters in continuation tuples
and thus leads to a larger 1/0O volume.

Since no EM variant of DC3 with LCP construction in STXXL is available, we extended
the original implementation to also calculate the LCP array recursively, as suggested in
[Karkkdinen and Sanders, 2003]. Similar to Section 3.1, one must save an array LCPy
during the lexicographic naming phase. Each entry in the output LCP7 is composed of
three parts: the number of equal characters found when merging sample and non-sample
tuples, the expanded value from LCPg, and the result of an RMQ on LCPy. The second
and third occur if the suffixes are ordered depending on the ranks of sub-suffixes, which is
usually the case. Part one can be counted easily during merging. The second component
requires processing of batched RMQs on LCPg with the distinguishing ranks of sub-suffixes
as boundaries; the result is multiplied by three for DC3. To determine the third summand,

23

Construction Time

I/O Volume

— .| g
©» ﬁS ,// %
Bl] 5 o)
g -
= =
= 10 |- 1 &
5] — 500 [
o g
Y L [s¥
£ 0 7
- 5
— ’ ‘ qu‘)
o ¢ 2
‘_‘215k ",‘/// N =1 1,000 -
5 L S 5
o +
E 10} 1 2
o 5
Q 5F ~
g
= g
>
M 0
— . 3
JF201 ress 1z
. et £ 1,000 |
[oN g +
= a
. | | =
& 10 g 500
3 sSssal s
I I I I I =
924 926 928 930 932 M
—
e A % 1,500 | .
Eool Y 1 £ v
= S o = e
- _+ - -
2 14 S 1000 g4t
= 2
g 10| |
&
. e o g oS00
= t—e—e—o—o 807 g 6o o o 85 & o o——e— °
L L L L L a? 0b_u I I 1 I
224 926 928 930 932 924 926 928 530 932
Input size n [B] Input size n [B]
—o— eSAIS —o— eSAIS-LCP (external RMQ) ----DC3
—=—eSAIS discarding ~ ——eSAIS-LCP (internal RMQ) -+-DC3-LCP

11q-0% erpediiM (0) 31q-gg ewoueyn uewn (q) 3q-g¢ erpadpiim (e)

119-0% S1oqueiny (p)

Figure 8: Subfigures (a)-(d) show construction time and I/O volume of all six implementations
run on platform A for three different inputs. Subfigures (a)-(b) use 32-bit positions, while (c)-(d)

runs with 40-bit.

24

Construction Time I/0 Volume

I
=
w|o | N o]
GBS 2 400 | z
- S .
= © Lo}
a 4 B 5 &
g 2. 300 =8
g = 5
& 3r b 5 g
o o, - T
g | |2 20 T
=) =+

1 1 L m?} 100 1 1 1
925 930 935 925 930 935
Input size n [B] Input size n [B]

|—e—eSAIS —s—eSAIS-LCP (internal RMQ) -+--DC3 |

Figure 9: Measured construction time and I/O volume of three implementations is shown for the
largest test instance Wikipedia run on platform B using 40-bit positions

the previously calculated value from LCPg is used for a batched random lookup on SAg and
ISAgr (if the recursive LCP was not zero) yielding the ranks of the first pair of mismatching
reduced characters. The third component represents the LCP of these character triples and
is computed using an RMQ on LCP . These steps are similar to those needed in eSAIS-LCP
(see Algorithm 3), however, DC3-LCP generally requires two batched random lookups and
two generally unpredictable RMQs per output value. In eSAIS-LCP on the other hand,
the lexicographic names encompass variable length substrings, thus requiring the prefix-
sum, followed by the same batched random access and an RMQ on LCPy. But due to the
structure of the inducing process, fewer operations are required after calculating LCP g+ and
the RMQ ranges are “local” to the currently induced bucket.

Figure 8 (a)-(d) shows the results of all six variants of the algorithms on the real-world
inputs run on platform A. We observe that eSAIS-LCP internal or external are the first viable
methods to calculate suffix array and LCP array in EM; our version of DC3-LCP finishes
in justifiable time only for very small instances. On all real-world inputs the construction
time of eSAIS-LCP is never more than twice the time of DC3 without LCP construction. As
expected, in-memory RMQs are consistently faster than EM-RMQs and also require fewer
I/0s, even though the PQ tuples are larger.

To exhibit experiments with building large suffix arrays, we configured the algorithms
to use 40-bit positions on platform A. Figure 8 (¢)-(d) show results for the Wikipedia and
Gutenberg input only up to 233, because larger instances require more local disk space
than available at the node of the cluster computer. On average over all tests instances of
Wikipedia, calculation using 40-bit positions take about 33% more construction time and
the expected 25% more I/O volume.

The size of suffix arrays that can be built on platform A was limited by the local disk
space; we therefore determined the maximum disk allocation required. Table 1 shows the
average maximum disk allocation measured empirically over our test inputs for 32-bit and
40-bit offset data types.

On platform B we had the necessary 4 TiB disk space required to process the full
Wikipedia instance, and these results are shown in Figure 9. The maximum size of the
in-memory RMQ structure was only about 12 MiB. Sorting of the whole Wikipedia input
with eSAIS took 2.4 days and 18 TiB I/O volume, and with eSAIS with LCP construction
(internal memory RMQs) took 5.0 days and 35 TiB I/O volume.

25

Table 1: Maximum disk allocation in bytes required by the algorithms, averaged and rounded over
all our inputs

| eSAIS -LCPint -LCPext | DC3 -LCP
32-bit | 25n 44n 52n | 46n 88n
40-bit | 28n 54n 63n | 58n 109n

8 Conclusions and Future Work

We presented a better external memory suffix sorter that can also construct the LCP
array. Although our implementations are already very practical, we point out some op-
timizations that could yield an even better performance in the future. Because eSAIS is
largely compute bound, a more efficient internal memory priority queue implementation,
e.g. a radix heap, may improve suffix array construction time significantly. Another fact
that could lead to significantly better performance is that any reinsertion into the PQ is
always after the last tuple of the current repetition bucket. Thus the PQ’s main-memory
merge buffer could be bypassed in many cases. Performance on inputs relying heavily on
sorting (like Pi and Skyline) could also be improved by sorting S*-substrings deeper than
only three characters if they are very short. As a whole, the potential of further speed
improvements by optimization of eSAIS is higher than for DC3. We note that the final re-
cursive stage can also output the Burrows-Wheeler transform [Burrows and Wheeler, 1994]
directly from the extracted PQ tuple, instead of the suffix array. Obviously, for real-world
applications one should stop sorting in external memory when the reduced string can be
suffix sorted internally. This is currently not implemented. Finally, it is possible to combine
the two variants of eSAIS-LCP (internal and external RMQs) into one algorithm with a
bounded in-memory RMQ structure, where unanswered RMQs are saved to EM and solved
later.

References

Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. 2004. Nearest Common
Ancestors: A Survey and a New Algorithm for a Distributed Environment. Theory Com-
put. Syst. 37, 3 (2004), 441-456.

Antonitio, P. J. Ryan, William F. Smyth, Andrew Turpin, and Xiaoyang Yu. 2004. New
suffix array algorithms — linear but not fast?. In Proc. Fifteenth Australasian Workshop
Combinatorial Algorithms (AWOCA). 148-156.

Lars Arge. 2003. The Buffer Tree: A Technique for Designing Batched External Data
Structures. Algorithmica 37, 1 (2003), 1-24.

Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey Scott Vitter. 1997. On Sorting
Strings in External Memory. In Proc. STOC. ACM Press, 540-548.

Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. 2012. LRM-Trees: Compressed
Indices, Adaptive Sorting, and Compressed Permutation. Theor. Comput. Sci. 459 (2012),
26—41.

Marina Barsky, Ulrike Stege, and Alex Thomo. 2010. A Survey of Practical Algorithms
for Suffix Tree Construction in External Memory. Softw. Pract. Ezper. 40, 11 (2010),
965-988.

26

Markus J. Bauer, Anthony J. Cox, Giovanna Rosone, and Marinella Sciortino. 2012.
Lightweight LCP Construction for Next-Generation Sequencing Datasets. In Proc. WABI
(LNCS), Vol. 7534. Springer, 326-337.

Timo Bingmann, Johannes Fischer, and Vitaly Osipov. 2013. Inducing Suffix and LCP
Arrays in External Memory. In Proc. ALENEX. STAM, 88-102.

Michael Burrows and David J. Wheeler. 1994. A Block-sorting Lossless Data Compression
Algorithm. Technical Report 124. Digital Equipment Corporation.

Richard Cole and Ramesh Hariharan. 2005. Dynamic LCA Queries on Trees. SIAM J.
Comput. 34, 4 (2005), 894-923.

Roman Dementiev, Juha Kérkkdinen, Jens Mehnert, and Peter Sanders. 2008a. Better
External Memory Suffix Array Construction. ACM J. Exp. Algorithmics 12 (2008), Article
No. 3.4.

Roman Dementiev, Lutz Kettner, and Peter Sanders. 2008b. STXXL: Standard Template
Library for XXL Data Sets. Softw. Pract. Ezper. 38, 6 (2008), 589-637.

Andreas Doring, David Weese, Tobias Rausch, and Knut Reinert. 2008. SeqAn — An
Efficient, Generic C++ Library for Sequence Analysis. BMC' Bioinformatics 9 (2008),
11.

Martin Farach-Colton, Paolo Ferragina, and Shanmugavelayutham Muthukrishnan. 2000.
On the sorting-complexity of suffix tree construction. J. ACM 47, 6 (2000), 987-1011.

Paolo Ferragina and Johannes Fischer. 2007. Suffix Arrays on Words. In Proc. CPM (LNCS),
Vol. 4580. Springer, 328-339.

Paolo Ferragina, Travis Gagie, and Giovanni Manzini. 2012. Lightweight Data Indexing and
Compression in External Memory. Algorithmica 63, 3 (2012), 707-730.

Johannes Fischer. 2010. Optimal Succinctness for Range Minimum Queries. In Proc. LATIN
(LNCS), Vol. 6034. Springer, 158-169.

Johannes Fischer. 2011. Inducing the LCP-Array. In Proc. WADS (LNCS), Vol. 6844.
Springer, 374-385.

Johannes Fischer and Volker Heun. 2007. A New Succinct Representation of RMQ-
Information and Improvements in the Enhanced Suffix Array. In Proc. ESCAPE (LNCS),
Vol. 4614. Springer, 459-470.

Johannes Fischer and Volker Heun. 2011. Space Efficient Preprocessing Schemes for Range
Minimum Queries on Static Arrays. SIAM J. Comput. 40, 2 (2011), 465-492.

Simon Gog and Enno Ohlebusch. 2011. Fast and Lightweight LCP-Array Construction
Algorithms. In Proc. ALENEX. SIAM Press, 25-34.

Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. 1992. New Indices for Text:
PAT Trees and PAT Arrays. In Information Retrieval: Data Structures and Algorithms,
William B. Frakes and Ricardo A. Baeza-Yates (Eds.). Prentice-Hall, Chapter 3, 66-82.

Hideo Itoh and Hozumi Tanaka. 1999. An Efficient Method for in Memory Construction of
Suffix Arrays. In Proc. SPIRE/CRIWG. IEEE Press, 81-88.

27

Juha Kérkkéinen, Giovanni Manzini, and Simon J. Puglisi. 2009. Permuted Longest-
Common-Prefix Array. In Proc. CPM (LNCS), Vol. 5577. Springer, 181-192.

Juha Kérkkdinen and Tommi Rantala. 2009. Engineering Radix Sort for Strings. In Proc.
SPIRE (LNCS), Vol. 5280. Springer, 3-14.

Juha Kérkkéainen and Peter Sanders. 2003. Simple Linear Work Suffix Array Construction.
Proc. ICALP 2719 (2003), 943-955.

Juha Karkkéainen, Peter Sanders, and Stefan Burkhardt. 2006. Linear Work Suffix Array
Construction. J. ACM 53, 6 (2006), 1-19.

Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. 2001. Linear-
Time Longest-Common-Prefix Computation in Suffix Arrays and Its Applications. In
Proc. CPM (LNCS), Vol. 2089. Springer, 181-192.

Pang Ko and Srinivas Aluru. 2005. Space Efficient Linear Time Construction of Suffix
Arrays. J. Discrete Algorithms 3, 2—4 (2005), 143-156.

Udi Manber and Eugene W. Myers. 1993. Suffix Arrays: A New Method for On-Line String
Searches. SIAM J. Comput. 22, 5 (1993), 935-948.

Michael A. Maniscalco and Simon J. Puglisi. 2008. An Efficient, Versatile Approach to Suffix
Sorting. ACM J. Ezp. Algorithmics 12 (2008), Article no. 1.2.

Giovanni Manzini. 2004. Two Space Saving Tricks for Linear Time LCP Array Computa-
tion. In Proc. Scandinavian Workshop on Algorithm Theory (SWAT) (LNCS), Vol. 3111.
Springer, 372-383.

Giovanni Manzini and Paolo Ferragina. 2004. Engineering a Lightweight Suffix Array Con-
struction Algorithm. Algorithmica 40, 1 (2004), 33-50.

Ge Nong, Sen Zhang, and Wai Hong Chan. 2011. Two Efficient Algorithms for Linear Time
Suffix Array Construction. IEEE Trans. Computers 60, 10 (2011), 1471-1484.

Simon J. Puglisi, William F. Smyth, and Andrew Turpin. 2005. The Performance of Linear
Time Suffix Sorting Algorithms. In Proc. Data Compression Conf. (DCC). IEEE Com-
puter Society, 358—-367.

Simon J. Puglisi, William F. Smyth, and Andrew Turpin. 2007. A Taxonomy of Suffix Array
Construction Algorithms. ACM Comput. Surv. 39, 2 (2007).

Peter Sanders. 2000. Fast Priority Queues for Cached Memorys. ACM J. Exp. Algorithmics
5 (2000), Article No. 7.

Klaus-Bernd Schiirmann and Jens Stoye. 2007. An Incomplex Algorithm for Fast Suffix
Array Counstruction. Softw. Pract. Exper. 37, 3 (2007), 309-329.

Ranjan Sinha, Simon J. Puglisi, Alistair Moffat, and Andrew Turpin. 2008. Improving
Suffix Array Locality for Fast Pattern Matching on Disk. In Proc. SIGMOD. ACM Press,
661-672.

David Weese. 2006. Entwurf und Implementierung eines generischen Substring-Index. Mas-
ter’s thesis. Humboldt University Berlin. http://www.segan.de/publications/weeseo6.
pdf.

http://www.seqan.de/publications/weese06.pdf
http://www.seqan.de/publications/weese06.pdf

	Introduction
	Our Contributions and Outline
	Further Related Work
	Differences to the Conference Versions

	Preliminaries
	Induced Sorting Toolkit

	Inducing LCP-Arrays in Main Memory
	Computing LCP-Values of S*-suffixes
	Finding Minima
	Computing LCP-values at the L/S-Seam

	Induced Suffix Sorting in External Memory
	Splitting Large Tuples
	Fill of Priority Queues and Arrays in an Example Program Run

	I/O Analysis of eSAIS with Split Tuples
	Inducing the LCP Array in External Memory
	Calculating LCP-S*
	Computing LCPs by Finding Minima

	Experimental Evaluation
	Plain Suffix Array Construction
	Suffix and LCP Array Construction

	Conclusions and Future Work

