
Robert Gallager’s Minimum Delay Routing Algorithm Using
Distributed Computation

Timo Bingmann and Dimitar Yordanov

Abstract

One of the computer science papers most worth reading is Gallager’s algorithm for mini-
mum delay routing. The merit of Gallager’s paper is its rigorous mathematical approach
to a problem, which is more often taken care of using heuristics. The approach is founded
on a well designed mathematical network model, which is custom-tailored to describe the
minimum total delay routing problem. Mathematical observations on the model lead to
two conditions for achieving global optimization, which are based on the marginal delay
of links and neighbors. From these observations and conditions an iterative, distributed
routing algorithm is naturally derived. Gallager finishes his analysis by proving in de-
tail that the algorithm achieves total minimum delay routing. Algorithm and model are
reviewed and illustrated in detail in this technical report.

1 Overview

In small computer networks all nodes are connected by a single medium, on which messages are
transferred. But as networks grow larger, they have to be broken up into smaller subnetworks
with router nodes mediating traffic between two or more transfer mediums. These router
nodes require information on where packets need to be forwarded in order to arrive at their
desired destination. Once the network grows sufficiently large, it is no longer possible to
configure routes manually.

Research for good routing algorithms began in the early days of networking. This technical
report studies the routing algorithm presented in the year 1977 by Robert Gallager in [Gall77].
Figure 1 shows how far the ARPANET, a predecessor of today’s Internet, was evolved around
the time Gallager published his routing algorithm. In 2006, Jim Kurose included Gallager’s
paper in his list of the ten most recommended computer science papers [Kuro06]. This
overview section classifies routing algorithms by several key characteristics. The classification
leads to the main goals achieved by Gallager’s algorithm.

1.1 Goals of Routing Algorithms

A routing algorithm can have different design goals and depending on the goals different
methods must be employed.

Most algorithms try to achieve “good” or even optimal routing. Here quality of routing is
usually measured by a routing metric. Metrics are described in the next subsection. However
this first optimization goal must be achieved within physical constraints and without losing
sight of other important aims like:

• A routing algorithm should require only little network overhead to keep bandwidth
available to the users.

1

http://idlebox.net/

Figure 1: Topology of the ARPANET in March 1977 from [HMMW78]

• Furthermore today’s Internet economy depends on stability and reliability of the under-
lying network routing calculations.

• Another aspect of quality for routing algorithms is how fast the network adapts to new
conditions, especially in case of failures. The newly computed routes should converge
to an optimal state quickly.

• The application of routing algorithms are not confined to small networks. For use in
large networks or even the Internet, a routing algorithm’s complexity must scale well
relative to the number of nodes.

As often with a list of goals, it is almost impossible to achieve all at once. Each routing
algorithm weighs the importance of above goals differently and thus achieves different opti-
mizations.

1.1.1 Routing Metrics

By using routing metrics, the quality of a set of routing variables or routing tables can be
measured. A metric defines the “distance” between two neighbors or two nodes. Only then
can an optimal routing setting be defined.

A routing metric is usually a weighted combination of following base metrics; however a
network administrator can make custom changes as required.

One of the base routing metrics is the imaginary path length of a link. If the length is set to 1
regardless of the actual link, then the resulting metric is called hop count. Beyond these base
lengths, different weights representing link qualities like reliability, load and bandwidth can
be used to sway the metric into a desired direction. External properties like cost or operator
peering policy must also be regarded in actual network environments.

2

One widely used metric is routing delay, because it gives a good overall, policy-free measure-
ment. It represents the delay a packet requires to travel from one node to another. This delay
depends on many network properties such as bandwidth of travelled links, queue states at
each router along the way, network congestion on intermediate links, and the physical distance
to be travelled. Optimizing routing delay gives the user the fastest network experience.

1.2 Characteristics of Routing Algorithms

1.2.1 Route Calculation Over Time

Having investigated the primary goals of routing algorithms, this section tries to highlight
some distinct design classes. A first classification of routing algorithms can be made by
observing when routing tables and variables are changed. See [Sega77] for detailed definitions
and analytic methods for the second two classes.

Static routing algorithms calculate routing tables and configure nodes once. During op-
eration of the network no changes are made, unless an administrator requests reconfiguration
because of link failure or addition. Good algorithms exist to calculate routing tables in fixed
networks; however static routing has no mechanism to adapt to changing traffic requirements.

Dynamic routing algorithms allow much greater flexibility: when a packet is received by
a routing node, an algorithm decides ad-hoc how to forward the packet. The decision may be
based on the instantaneous states of outgoing queues and other variables. In extreme cases
the routing tables are recalculated for each packet. This large amount of variables makes
formal analysis of dynamic routing algorithms difficult.

Quasi-static routing algorithms are a trade-off between the other two strategies. At spe-
cific time points a routing algorithm may change routing tables to adapt to new requirements.
Usually this is based on a periodic updating mechanism, in which nodes exchange variables
needed to improve their routing tables. The nodes may need several update cycles to adapt
to changed demands.

1.2.2 Other Characteristics

Single-Path vs. Multi-Path Algorithms
Traffic flow exiting a node towards its destination can either be sent over a single link or
distributed to multiple neighbors. Single-path algorithms are much easier to evaluate and
implement, but cannot take advantage of the network’s full bandwidth. In larger networks
this deficiency becomes intolerable. However determining the correct fractions of traffic routed
to neighbors makes multi-path algorithms very complex.

Centralized vs. Distributed Algorithms
Routing algorithms can also be distinguished by the location where new routing information
is calculated. Centralized algorithms depend on one special node which collects information
and computes new routes. In the distributed method each node calculates new optimized
routing variables from locally available information. Hence the calculation is done on each
node and information is cooperatively exchanged.

The centralized method has some obvious draw-backs. It suffers from the chicken-and-egg
problem: in order to be able to calculate new routes the central node needs information about
the nodes on the network. However, this information has to be transmitted to the central
node without having established transmission routes. Secondly special bridge links or cut
points may fail so that no failure information can reach the central node. And lastly the

3

central node itself is prone for system failure and attacks. Because of these problems most
modern approaches rely on distributed routing algorithms.

User vs. System Optimization
Another characteristic by which (distributed) routing algorithms can be divided into two
groups is based on the scope of their optimization goals. A distributed algorithm can try to
optimize routing variables locally and achieve local user optimal goals. For example it could
balance the load on all its outgoing links. If, however, an algorithm tries to achieve global
goals by having the nodes cooperate with each other, then this is called system optimization.
The algorithm presented by Gallager optimizes total system delay.

1.3 Goals and Characteristics of Gallager’s Algorithm

In this technical report the distributed, multi-path, quasi-static algorithm presented by Gal-
lager in [Gall77] is reviewed. It minimizes total routing delay and achieves global system
optimization. The routing delay metric is used in the algorithm, however any other convex,
continuous valuation function will work as well. Then the custom defined metric function is
minimized instead of total delay.

1.3.1 Knowledge at that Time

As depicted in figure 1 in 1977 the ARPANET was widely spread throughout the United
States. The original routing algorithm implemented in the ARPANET was designed in 1969
(see [McFR78] for an overview). It tries to direct each packet along the path with smallest
total estimated transfer time. These paths are periodically calculated by the IMPs (Internet
Message Processors), the routers of that time. Their computations are based on the delay to
their direct neighbors and routing information which is exchanged between them. Each IMP
sends its newly computed routing table to each neighbor, so the neighbors in turn can update
their own path tables. Thus each IMP has estimations of the total delay to each destination
IMP and a best outgoing link for these packets.

1.3.2 Comparison to Today’s Routing Protocols

Today the two most widely spread routing protocols in the Internet are OSPF and BGP. Both
are routing protocols and thus define how routing information is configured, managed and
exchanged, while the actual computation of routes is done using specific routing algorithms.
See [KuRo03] for more details on the two protocols.

Open Shortest Path First (OSPF) is used as interior gateway protocol within autonomous
systems to manage local routing. It uses Dijkstra’s algorithm to calculate a shortest path
tree regarding an custom-defined metric. Thus the whole network topology including metric
information must be known to each node. Dijkstra’s original algorithm computes only a single
best path. However, due to the Internet’s size, OSPF will find multiple routing paths with
the same distance and use both equally.

Today the Border Gateway Protocol (BGP) is used between the autonomous systems of
the Internet. BGP is a path vector protocol, which is derived from the basic distance vector
protocol. This protocol’s algorithm is similar to Gallager’s algorithm. It also builds a distance
table to each node and updates it by calculating the cost of the next hop plus the neighbor’s
currently known minimum cost to the destination. However BGP will typically install only
a single route for each destination. Therefore BGP is a single-path, distributed, dynamic
routing protocol with many further security and management features.

4

2 Model and Algorithm

2.1 Model

To grasp the routing challenge mathematically, Gallager formalizes the following network
model. Figure 2 illustrates a small example network containing four nodes.

A network consists of n nodes, which are enumerated by the integers 1, . . . n. A link from
node i to node j is represented by the tuple (i, j). It is assumed that if (i, j) exists, then the
reverse link (j, i) exists as well. This way neighbors can exchange routing information. Let
L := {(i, j) is existing link} the set of links.

An essential input to the algorithm is the amount of traffic, which enters the network at a
specific source node i and exits it at the destination node, provided that a route exists. This
input is defined by ri(j) ≥ 0 (e.g. in bits/s) as the traffic entering at node i destined to node
j. Thus when the network is connected and routing works,

∑n
j=1 ri(j) traffic enters at node

i and
∑n

i=1 ri(j) traffic exits at node j. All ri(j) are grouped into a set r named input set.

?>=<89:;i

?>=<89:;j

?>=<89:;k
tk(j)=ti(j)φik(j)

?>=<89:;l tl(j)=rl(j)+ti(j)φil(j)+tk(j)φkl(j)

ri(j)=ti(j) //

φik(j)= 1
2

99ttttttttttttttttt

φil(j)=
1
2 ((QQQQQQQQQQQQQQQQQQQ

φkj(j)=
2
3

))RRRRRRRRRRRRRRR

φkl(j)=
1
3

��#
##
##
##
##
##
##
##
##

φlj(j)=1

=={{{{{{{{{{{{{{{{

rl(j)

66nnnnnnnnn

ri(j)+rl(j)=tj(j)//

Figure 2: Example network of four nodes

The traffic ri(j) is supposed to flow from node i to node j. Usually intermediate nodes are
required along the way and routing variables decide by which links the packets find their
destination. At these intermediate nodes further traffic destined for node j can enter the
network or be received from other sources. The sum over all traffic at a node i destined for
node j is defined as ti(j). These values are not input values; a routing algorithm determines
them by guiding network flow. The set of all ti(j) is called t, the node flow set.

An algorithm determines with routing variables φik(j) ≥ 0 the fraction of the traffic ti(j)
which flows over the link (i, k) towards node j. So ti(j)φik(j) units of traffic flow over link
(i, k). Name the set of all variables φik(j) the routing variable set φ. Such a set must satisfy
the following three constraints:

1. It is assumed that φik(j) = 0 for non-existing links ((i, k) /∈ L) and φik(i) = 0 as no
traffic is send out again after arriving at destination node i.

φik(j) = 0 ∀ (i, j) /∈ L or i = j (1a)

2. All traffic aggregated at a node must be sent out over a link. No loss of traffic is allowed.

n∑
k=1

φik(j) = 1 ∀ i, j (1b)

5

3. All nodes are inter-connected: for each pair of nodes (i, j) a routing path from i to j
exists.

φik(j) > 0, φkl(j) > 0, . . . , φmj(j) > 0 ∃ i, k, l, . . . , m, j ∀ i, j (1c)

Equation 2 shows a first dependency between the three sets of variables. It describes the
aggregation of traffic at node i destined for node j.

ti(j) = ri(j) +
n∑

l=1

tl(j)φli(j) (2)

The equation above describes only the flow of traffic towards node j, the whole network
usually carries flows towards each node. This one traffic flow is regarded at node i and may
be spread out and sent over different links towards node j as described by φik(j). The link
(i, k) carries ti(j)φik(j) units of traffic (e.g. bits/s) towards node j. The total traffic over all
flows in the network carried by link (i, k) is then

fik =
∑

j

ti(j)φik(j) (3)

For (i, k) /∈ L set fik = 0.

The model does not specify a maximum link capacity directly. Instead the main focus is
directed to the delay per unit of time Dik which a link (i, k) introduces into the network.
The delay is assumed to depend only on the amount of traffic flowing over the link: Dik(fik).
This delay includes processing time, send queuing delay, transfer time and arrival queues.
Restricting the dependency of Dik to the traffic amount simplifies analysis while simultane-
ously masking some complex properties of routers. For example packet sizes are disregarded,
even though routers may require considerably more time to process many small packets than
few large packets even though the total traffic rate is equal.

The actual delay function is only assumed to be convex and increasing. A reasonable example
is Dik(fik) = fik

Cik−fik
, where Cik is the capacity of the link (i, k). Thus Dik(fik) → ∞ for

fik → Cik. More complex analysis of analytic delay functions can be found in [Klei70].

Coming to the main objective of the routing algorithm let

DT =
∑
i,k

Dik(fik) (4)

This sum describes the total delay in the network and will be minimized by the algorithm
by setting optimal routing variables φ. This is possible because DT depends on fik, which
again are functions of the sets r and φ (equation 3). The sum DT grows large if any of the
Dik(fik) grows large because the traffic fik exceeds some limitation like link capacity.

2.1.1 Routing Variables

To show that an algorithm which modifies only φ will actually guide the network’s flow,
Gallager proves that a given input set r and a routing variable set φ uniquely define the
network flow set t.

To prove this, first let Φj = (φik(j))1≤i,k≤n be the square n×n matrix containing the routing
variable set. The two constraints φik(j) ≥ 0 and equation 1b are exactly the defining prop-
erties of a stochastic matrix. By temporarily setting φji(j) := ri(j)P

k rk(j) , let the appropriate
fraction of all arriving traffic take an imaginary link from the destination back to the source

6

node. This creates steady traffic flow cycles in the network and the equation 2 can formally
be contracted to

ti(j) =
n∑

l=1

tl(j)φli(j) (5)

This is the equation of a Markov chain (see [Behr00]) with an equilibrium distribution: t̄j =
t̄jΦj , with t̄j = (ti(j))1≤i≤n the vector of network flows. If it can be shown that Φj is
a irreducible Markov transition matrix, then the Markov chain has exactly one solution t̄j
except for a scale factor. This scale factor corresponds to the absolute traffic arriving at node
j. A Markov chain is irreducible if for all states i, j the state j is accessible from i (starting
in i there is a non-zero probability that state j is reached). This is equivalent to the third
constraint of φ (see equation 1c). Thus given r and φ the network flow t is uniquely defined
by equation 2.

?>=<89:;1

?>=<89:;2
t2=50 kbit/s

?>=<89:;3
t3=116 1

3
kbit/s

?>=<89:;4

100 kbit/s =r1=t1

50 kbit/s=r3

t4=r1+r3=150 kbit/s

//

φ12= 1
2

99ttttttttttttttttt

φ13= 1
2 ((QQQQQQQQQQQQQQQQQQ

φ24= 2
3

))RRRRRRRRRRRRRRR

φ23= 1
3

��#
##
##
##
##
##
##
##
##

φ34=1

=={{{{{{{{{{{{{{{{

EE����

//

φ41= 2
3

φ43= 1
3

Figure 3: Example with calculated traffic flow and imaginary links

This result is illustrated by the following explicit calculation of t̄j for the network in figure 3.
The network is the same as in figure 2 but has explicit node labels and traffic values. The
imaginary links carrying the traffic back from destination to source are also depicted. In the
diagram and equations the target argument j = 4 is omitted.

Φ = (φik(j))i,k =


0 1

2
1
2 0

0 0 1
3

2
3

0 0 0 1
2
3 0 1

3 0

 lim
n→∞

Φn =


6
25

3
25

7
25

9
25

6
25

3
25

7
25

9
25

6
25

3
25

7
25

9
25

6
25

3
25

7
25

9
25

 ⇒ t̄′ =
1
25


6
3
7
9


>

⇒ t̄′ · Φ = 1
25

(
6 3 7 9

)
· Φ = 1

25


9· 2

3

6· 1
2

6· 1
2
+3· 1

3
+9· 1

3

3· 2
3
+7·1


>

= t̄′ ⇒ t̄ =


100
50

1161
3

150


>

kbit/s

Notice that
∑

k t̄′k = 1. By requiring t̄4 = r1 + r3 = 150 kbit/s the scale factor for vector t̄′

can be determined: t̄ = 25
9 · 150 · t̄′.

7

2.2 Conditions for Minimum Delay

Having established a formal model for network traffic flow and a method to represent the total
delay experienced by packets, the goal of minimizing delay can be expressed by minimizing
DT . The analysis in this section will establish two conditions for minimizing the total delay.

2.2.1 Marginal Delay

?>=<89:;i

?>=<89:;j

?>=<89:;k

εφik(j)
∂DT

∂rk(j)

?>=<89:;l

ri(j)+ε //

Dik(fik)+ εφik(j)D′
ik(fik)

99ttttttttttttttttt

((QQQQQQQQQQQQQQQQQQQ

))RRRRRRRRRRRRRRR

��#
##
##
##
##
##
##
##
##

=={{{{{{{{{{{{{{{{

ri(j)+ε//

Figure 4: Example network with incremental delays framed

Begin with the following thought experiment. Suppose a given network (like the one in
figure 4) is running and the input traffic ri(j) is increased by a small amount ε. The routing
algorithm must determine how the outgoing links of i will carry this extra traffic towards
node j and how it will effect the total delay DT .

The straight-forward method is to choose the link with the smallest incremental delay D′
ik(fik).

Thus the new traffic introduces the smallest delay in respect to outgoing links of i. However
this straight-forward approach is only user optimal: it disregards that the increase may have
other effects on existing traffic further down the path and may lead to non-optimal total
performance of the network. Therefore the total effect of an increase of traffic on one of the
outgoing links needs to be calculated. Analytically this is expressed by the partial derivative
∂DT
∂ri(j)

. It represents exactly the value needed: the increase of the total delay DT regarding
extra input traffic ri(j). An equation for the marginal delay can be deduced by letting ε → 0.

Say the extra traffic is routed over an intermediate node k. Obviously the link (i, k) will then
carry εφik(j) extra traffic. The delay on link (i, k) previously being Dik(fik) increases by

εφik(j)D′
ik(fik) where D′

ik(fik) =
dDik(fik)

dfik

Then the additional traffic travels from node k towards node j and further increases the total
delay on its path. Regarding node k this extra traffic can be viewed in the same manner as
the new incoming traffic at node i: the increase is εφik(j) ∂DT

∂rk(j) . This leads to an implicit
formula for the total delay increase:

∂DT

∂ri(j)
=

∑
k

φik(j)
(

D′
ik(fik) +

∂DT

∂rk(j)

)
(6)

Set ∂DT
∂ri(j)

= 0 for all i = j or (i, j) /∈ L.

Now it’s possible to select the best link (i, k), but a routing algorithm adjusts the network
flow by changing routing variables in φ. The equations above only examine the change in
delay regarding increased traffic. So now consider how changes to a φik(j) will effect the total
delay DT : ∂DT

∂φik(j) . Figure 5 illustrates a link (i, k) with routing variable φik(j).

8

?>=<89:;i

?>=<89:;k

εti(j)
∂DT

∂rk(j)

?>=<89:;j

ti(j) //

φik(j)+ε

Dik(fik)+ εti(j)D
′
ik(fik)

77oooooooooooooooo

++WWWWWWWW

Figure 5: Example network with incremental delays in respect to φik(j)

The link (i, k) initially carries ti(j)φik(j) units of traffic. If φik(j) is increased by a small
amount ε, then the traffic on link (i, k) increases by εti(j) and the delay by εti(j)D′

ik(fik).
The additional traffic εti(j) arriving at node k again increases the total delay of network.
Implicitly this can be expressed by

∂DT

∂φik(j)
= ti(j)

(
D′

ik(fik) +
∂DT

∂rk(j)

)
(7)

Gallager shows that given sets r, φ and marginal delay functions D′
ik(fik) the equations above

have a unique solutions for ∂DT
∂ri(j)

and ∂DT
∂φik(j) . He constructs two explicit continuous equations

depending only on the three given sets. However the implicit equations 6 and 7 are more
useful. In the next section, the two equations will be analyzed and transformed into two
conditions for minimum total delay.

2.2.2 Necessary and Sufficient Conditions

Having established the partial derivatives of DT as a function of φ, a minimum can be found
by calculating a stationary point in which all first-order derivatives are zero. Furthermore
Lagrange multipliers are required, because these stationary points also have to satisfy the
constraints

∑
k φik(j) = 1 and φik(j) ≥ 0 (∀ i, j, k). This method introduces the multipliers

λij and gives a necessary condition for finding a minimum in DT :

∂DT

∂φik(j)
= ti(j)

(
D′

ik(fik) +
∂DT

∂rk(j)

) {
= λij , φik(j) > 0
≥ λij , φik(j) = 0

∀ i 6= j ∀ (i, k) ∈ L (8)

The first observation is that the multipliers λij do not depend on k. This leads to the insight,
that for all links (i, k) having φik(j) > 0 the marginal delay ∂DT

∂φik(j) must be the same value λij .
Furthermore links with φik(j) = 0 must have greater marginal delay and thus are less good
links for new traffic. However this condition is not sufficient to find a set φ with minimum
delay.

?>=<89:;1

∂DT
∂r1

=3

?>=<89:;2

∂DT
∂r2

=3

?>=<89:;3
∂DT
∂r3

=1

?>=<89:;4

∂DT
∂r4

=0

r1 //

φ14=1
D′

14=3
//

φ12=0
D′

12=1
##

φ23=1
D′

23=2

..

φ24=0
D′

24=1

77

φ34=1
D′

34=1

FF
r1//

Figure 6: Network satisfying equation 8

Figure 6 shows a network fulfilling equation 8. To improve readability the target argument
j = 4 is omitted in the diagram and following calculations. In the example the delay functions

9

Dik(fik) are linear to fik: D14(f14) = 3 ·f14 and thus the derivative D′
14(f14) = 3. The partial

derivatives of DT in respect to φik can be calculated explicitly using equations 6 and 7:

∂DT

∂φ14
= t1

(
D′

14 +
∂DT

∂r4

)
= r1D

′
14 = 3r1 = λ14

∂DT

∂φ12
= t1

(
D′

12 +
∂DT

∂r2

)
= t1

(
D′

12 + φ23

[
D′

23 +
∂DT

∂r3

]
+ φ24

[
D′

24 +
∂DT

∂r4

])
= t1

(
D′

12 + φ23

[
D′

23 + φ34

(
D′

34 +
∂DT

∂r4

)]
+ 0

[
D′

24 +
∂DT

∂r4

])
= r1

(
D′

12 + φ23D
′
23 + φ23φ34D

′
34

)
= r1 (1 + 1 · 2 + 1 · 1 · 1) = 4r1 ≥ λ14

∂DT

∂φ24
= t2

(
D′

24 +
∂DT

∂r4

)
= r1φ12 (. . .) = r10 (. . .) = 0 ≥ λ24

for the same reason:
∂DT

∂φ23
= 0 = λ24 and

∂DT

∂φ34
= 0 = λ34

Thus equation 8 is satisfied with λ14 = 3r1, λ24 = 0 and λ34 = 0. In total the delay
DT = D14(r1) = 3r1. However by changing the routing variables as shown in figure 7 a
smaller total delay DT can be achieved: DT = D12(r1) + D24(r1) = 1r1 + 1r1 = 2r2.

?>=<89:;1

∂DT
∂r1

=2

?>=<89:;2

∂DT
∂r2

=1

?>=<89:;3
∂DT
∂r3

=0

?>=<89:;4

∂DT
∂r4

=0

r1 //

φ14=0
D′

14=3
//

φ12=1
D′

12=1
##

φ23=0
D′

23=2

..

φ24=1
D′

24=1

77

φ34=0
D′

34=1

FF
r1//

Figure 7: Network with better total delay DT

Obviously equation 8 is not a sufficient condition for minimal delay. The trouble is that links
with φik = 0 and therefore ti(j) = 0 automatically fulfill the condition. Gallager approaches
this unsatisfactory result with the brilliant idea of removing the factor ti(j) from equation 8.
This leads to the following modified version of the equation, which is a sufficient condition
for minimal delay:

∂DT

∂ri(j)
≤ D′

ik(fik) +
∂DT

∂rk(j)
∀ i 6= j ∀ (i, k) ∈ L (9)

The equation depicts an intuitive condition for minimal delay: if the marginal delay increases
along the link (in case of >), then the total delay on the network can be decreased by sending
more traffic over link (i, k).

?>=<89:;i

∂DT
∂ri(j)

?>=<89:;k

∂DT
∂rk(j)

?>=<89:;jti(j) //_____
≤D′

ik(fik) +
// //______

Figure 8: Sufficient condition for the link (i, k)

Gallager proves that equation 9 is a sufficient condition for minimal delay by taking advantage
of the convexity of the functions Dik(fik) regarding fik.

10

Furthermore with the objective of creating an algorithm based on the sufficient condition,
Gallager deduces a more useful inequality: first regard the network as a whole by taking
equation 9 times φik(j) and summing over all k:∑

k

φik(j)︸ ︷︷ ︸
(1b)
= 1

∂DT

∂ri(j)
≤

∑
k

φik(j)
(

D′
ik(fik) +

∂DT

∂rk(j)

)
(6)
=

∂DT

∂ri(j)

=⇒ ∂DT

∂ri(j)
= D′

ik(fik) +
∂DT

∂rk(j)
(10)

This shows that the sufficient condition must actually be satisfied with equality. Therefore
all outgoing links of i must have the same marginal delay. Now view the new equality 10
from a different angle: for all links (i, k) there is no link (i,m) with larger incremental delay:

∀ (i, k) ¬∃ (i,m) D′
ik(fik) +

∂DT

∂rk(j)
< D′

im(fim) +
∂DT

∂rm(j)

By moving ¬∃ (i,m) into the equation and restricting the scope to the link with smallest
delay, the following inequality can be deduced. It will be used by the algorithm to iteratively
lower total delay.

∀ (i, k) D′
ik(fik) +

∂DT

∂rk(j)
− min

(i,m)∈L

(
D′

im(fim) +
∂DT

∂rm(j)

)
≥ 0 (11)

2.3 The Algorithm

The last section established an analytic sufficient condition for achieving minimum total
delay routing in a network. This global condition was localized to equation 11. In this
section Gallager’s distributed minimum delay algorithm is presented on the basis of these
considerations.

The general method of the algorithm is to iteratively optimize routing by increasing the
routing variables φik(j) for links, which have small marginal delay D′

ik(fik) + ∂DT
∂rk(j) and

decrease them in the other case.

The algorithm’s approach can be separated into two parts. In the first one the necessary
variables ∂Dik

∂ri(j)
and D′

ik(fik) are determined. The second part specifies how to calculate new
routing variables φ1 from the collected variables. Alongside these two calculation steps the
algorithm must keep the routing variables loop-free to prevent deadlock.

2.3.1 Variables available to a specific node

One important design goal of Gallager is to calculate optimized variables using a distributed
algorithm. Therefore only locally available or collected information may be used in the routing
calculations. Figure 9 shows a complex network in which some variables of node i are labelled.
In the example all traffic from s to j must flow over i.

Consider in general which variables are directly available to a node i.

• The node always knows its incoming and outgoing links and identifiers for its neighbors:
in the example (k1, k2, k3, k4, k5, k6).

• On each of the links the amount of traffic flow can be measured: fik and fki for all
neighbors k.

11

?>=<89:;i

?>=<89:;k1

?>=<89:;k2

?>=<89:;k3
?>=<89:;k4

?>=<89:;k5

?>=<89:;k6

?>=<89:;s ?>=<89:;jrs(j) //

&&LLLLLLLLLLL //_______

88rrrrrrrrrrr

fk3i

!!CC
CC

CC
CC

CC
CC

CC
C

ti(j) //
=={{{{{{{{{{{{{{{

fik4

=={{{{{{{{{{{{{{{

Dik5
(fik5

)
//

D′
ik6

(fik6
)

!!CC
CC

CC
CC

CC
CC

CC
C

&&LLLLLLLLLLL

//_______ 88rrrrrrrrrrr

rs(j)//

∂DT
∂rk4

		
∂DT
∂rk5sendss

∂DT
∂rk6

UU

Figure 9: Some variables of node i

• Among the incoming traffic flow the node receives some traffic ti(j), which must be
forwarded towards node j.

• To guide the traffic towards node j each link has a routing variable φik(j).

• Each traffic flow and link introduces a delay into the network. This delay Dik can either
be measured directly on the link or be calculated from the traffic flow Dik(fik) using
appropriate functions.

• From each link’s delay the node can calculate the incremental delay D′
ik by differentiat-

ing its functions Dik(fik). More often D′
ik(fik) will be calculated directly using complex

formulas like those found in [Klei70].

Almost all variables required to evaluate equation 11 are directly available to a node. Yet the
most interesting variables are still missing: the marginal delay ∂DT

∂rk(j) of its neighbors. These
variable must periodically be calculated by the neighbors and sent to i over their link. When
node i has received these variables from all its downstream neighbors, then i can calculate its
own marginal delay using equation 6 and must communicate the result to all its neighbors.

In figure 9 the directions downstream and upstream are intuitively distinguishable: k1, k2, k3

are upstream and k4, k5, k6 downstream of i. In general Gallager defines k to be downstream
from i with respect to destination j, if there is a path from i to j through k and all routing
variables on the way down to j are positive (i.e. φil1(j) > 0 ... φlnj(j) > 0). The opposite of
downstream is defined as upstream (variables on the way up to s are positive).

The following important restriction has to be fulfilled in order to guarantee loop freedom: If
k is downstream of i with respect to j, then i must not be downstream of k with respect to
j (but may be downstream with respect to some other destination node).

By this restriction the downstream relation forms a partial order on the set of nodes. This
way computation of marginal delay begins at the destination node and goes upstream towards
the source. During this distributed computation a stable state is reached and no deadlock
can occur, because a neighbor node cannot be up- and downstream at the same time.

2.3.2 Calculation of new optimized routing variables

The second part of the algorithm calculates new routing variables φ1 from the variables
collected in the last section. The algorithm’s actual calculations are based on equation 11.
The main challenge in this section is to keep the routing variables loop-free.

12

To achieve loop freedom, a set of blocked nodes Bi(j) is defined for each node i in direction
of j. This set restricts the node flow from node i by requiring φik(j) = 0 ∀ k ∈ Bi(j). For
notational convenience the blocked set includes all nodes k, which do not have a link to the
node i: {k : (i, k) /∈ L} ⊆ Bi(j).

The second type of nodes in Bi(j) are neighbors, which have downstream paths containing a
loop. Formally Bi(j) includes all nodes k, for which φik(j) = 0, φ1

lm(j) > 0 and k can route
packets to j over a path that contains some link (l,m) with improper φlm(j).

A routing variable φik(j) is defined as improper if it is positive and the marginal delay from
i to j is smaller or equal to the marginal delay from k to j:

φik(j) > 0 and
∂DT

∂ri(j)
≤ ∂DT

∂rk(j)
(12)

Intuitively a routing variable φik(j) is improper if it is inefficient to route more traffic over
the link. The algorithm is designed to reduce such φik(j). As the algorithm progresses and
optimizes routing, improper routing variables become less likely. The marginal delays ∂DT

∂ri(j)
form another partial order on the set of nodes, if and only if there is no improper routing
variable in the network. This marginal delay order, if it exists, is the same as the downstream
order: marginal delays increase monotonically from destination to source node. These orders
can be seen in the examples depicted in figures 6 and 10.

To better understand the blocked set regard the example in figure 10. The partial derivatives
of DT in respect to ri(j) can be calculated explicitly using equation 6:

∂DT

∂r1(4)
= φ12(4)︸ ︷︷ ︸

=1

(
D′

12 +
∂DT

∂r2(4)

)
+ φ13(4)︸ ︷︷ ︸

=0

(
D′

13 +
∂DT

∂r3(4)

)
= 1(2 + 2) + 0 = 4

∂DT

∂r2(4)
= φ24(4)︸ ︷︷ ︸

=1

(
D′

24 +
∂DT

∂r4(4)

)
= 1(2 + 0) = 2

∂DT

∂r3(4)
= φ34(4)

(
D′

34 +
∂DT

∂r4(4)

)
+ φ31(4)

(
D′

31 +
∂DT

∂r1(4)

)
= 1

2
(1 + 0) + 1

2
(1 + 4) = 3

?>=<89:;1

∂DT
∂r1(4)

=4

?>=<89:;2

∂DT
∂r2(4)

=2

?>=<89:;3
∂DT

∂r3(4)
=3

?>=<89:;4

∂DT
∂r4(4)

=0

t1(4) //

D′
12=2

φ12(4)=1 //

D′
13=1

φ13(4)=0

��

D′
24=2

φ24(4)=1 //

D′
34=1

φ34(4)= 1
2

BB

D′
31=1

φ31(4)= 1
2

(improper)

VV
t1(4)//

Figure 10: Example of an improper routing variable

From the equations above it can be seen that ∂DT
∂r1(4) and ∂DT

∂r3(4) would depend on each other
if both φ13(4) and φ31(4) are larger than zero. Furthermore node 1 would simultaneously be
up- and downstream to 3, thus violating the condition for loop freedom. The block set is
defined to avoid this situation.

In figure 10 the variable φ13(4) is zero. To keep the network loop-free, φ13(4) must stay zero
as long as φ31(4) is positive. In this state φ31(4) is improper, because the marginal delay from

13

node 3 to 4 is smaller than the marginal delay from 1 to 4. Therefore node 3 will be blocked
from node 1 in respect to destination 4.

Note that the set Bi(j) can change in each iteration of the algorithm. This way, nodes which
were blocked in the past can become unblocked. Previously unused links can carry traffic
after the algorithm breaks up possible loops by reducing improper routing variables to zero.

The algorithm always reduces improper routing values and must keep the routing variables
loop-free. Based on equation 11 the actual calculation of the algorithm reduces the amount
of traffic on non-optimal links and increases it on the best link.

An iteration of the calculation starts by determining the link (i, b) with the lowest marginal
delay D′

ib(fib) + ∂DT
∂rb(j)

. The node b is the best unblocked downstream node and its routing
variable φib(j) will be increased.

Define aik(j) as the difference between the marginal delay of link (i, k) and the best link (i, b):

aik(j) = D′
ik(fik) +

∂DT

∂rk(j)
−

(
D′

ib(fib) +
∂DT

∂rb(j)

)
(13)

For the best link aib(j) will be zero. Calculating aik(j) only makes sense for links that are
not blocked (i.e. k /∈ Bi(j)).

Now let ∆ik(j) be the reduction for routing variable φik(j):

∆ik(j) = min
{

φik(j),
η

ti(j)
aik(j)

}
(14)

In equation 14 the difference aik(j) is adjusted by a scale factor η and the traffic flow ti(j).
Together these factors determine how fast the algorithm adapts to changes. The change is
inversely proportional to ti(j), so routing variables on heavily used links are changed slowly.
The scale factor η specifies how fast the algorithm changes variables and influences whether
the algorithm converges to a stable state with minimum delay. The min construct is only
used to ensure that φ1

ik(j) ≥ 0 in equation 15.

As required above the new routing variables φ1
ik(j) and the reduction ∆ik(j) are defined as

zero for all nodes k from the set Bi(j).

For the rest of the nodes k, φ1
ik(j) is defined as follows:

φ1
ik(j) =


φik(j)−∆ik(j) if (i, k) is not the best link
φib(j) +

∑
(i,m)∈L

m6=b

∆im(j) if (i, k) is the best link and therefore k = b (15)

Thus the new routing variables φ1 are derived from the old ones by “shifting” an amount of
traffic from all non-optimal links to the best one. The amount shifted is determined by the
difference in marginal delays and two proportional factors.

Gallager finishes his paper by proving through a series of seven lemmas that the algorithm
will achieve total minimum delay regardless of the starting routing variable set (see Appendix
C in [Gall77]). The lemmas require Dik(fik) to have a positive first derivative, a non-negative
second derivative and a capacity Cik with limfik↗Cik

Dik(fik) = ∞.

lim
m→∞

DT (φm) = min
φ

DT (φ) (16)

During the proof a very small value for η is determined by upper-bounding all D′
ik(fik).

Using this η equation 16 can be proven with some advanced calculus like the Taylor series
and Cauchy-Schwarz’s inequality. The algorithm is reduced to a non-increasing sequence in
the compact space of routing variables φ, on which DT is a continuous function.

14

3 Conclusion

3.1 Goals Achieved

The merit of Gallager’s paper is its rigorous mathematical approach to a problem, which
is more often taken care of using heuristics. The approach is founded on a well designed
mathematical model of a network. This formal model is custom-tailored to describe the
minimum total delay problem and leads to two conditions for achieving global optimization.
The conditions are based on the marginal delay of links and neighbors.

These two conditions are directly used to derive an iterative, distributed routing algorithm.
Extra attention is paid by the algorithm to keeping the routing paths loop-free at all times.

Using the model, equations for the algorithm’s operation and some advanced calculus Gallager
proves in minute detail, that the algorithm will always progress from an arbitrary start state
into a network state with total minimum delay.

3.2 Problems

Unfortunately the algorithm, as it is presented by Gallager, is unsuitable for real networks
or the Internet for several reasons. Due to the mathematical approach some issues of real
networks had to be disregarded.

The first drawback is the required scale parameter η. This variable depends on the network
and the input traffic, and therefore it is not possible to determine one η for all networks
especially if input traffic changes greatly. For small η the algorithm will converge very slowly,
but if η is too large it may never converge. In the formal proof a very small value can be
used, but this value would lead to unsatisfactory results in real networks. A good parameter
has to be gained experimentally.

The question of how the start state can be determined was left open. The algorithm expects
a set of loop-free routing variables φ to begin with. Gallager mentions one possibility: to
determine shortest paths using a Dijkstra network flood. This method may lead to link flows
which exceed capacity. Hence a good flow control has to be implemented, which limits the
input traffic of the network during this initial period.

Another practical issue is not dealt with by the algorithm: when links or nodes are dropped
or added, some higher level protocol must handle these network topology changes. The
algorithm is able to adapt if one of the currently selected links fail. But when a node goes
down, a complete routing update has to be started. A node i which noticed a broken link
has to broadcast an infinite marginal delay with respect of all nodes j formerly reachable.

Lastly it remains to be investigated, how fast the algorithm adapts to changing statistics.
This is crucial for practical implementation as network input traffic is a constantly changing
value.

3.3 Impact

The strength of Gallager’s investigations does not lie in practical realization: presented in
1977, there is no known implementation. Recently Gallager’s mathematical results have been
taken up and refined to an approximate, practically implementable algorithm in [VuGLA99].
The strong model and sound mathematical approach have put analysis of routing algorithms
onto a new basis.

15

References

[Behr00] E. Behrends. Introduction to Markov chains. Vieweg. 2000.

[Gall77] R. G. Gallager. A Minimum Delay Routing Algorithm Using Distributed
Computation. IEEE Transactions on Communications COM-25(1), January
1977, pages 73–85.

[HMMW78] F. Heart, A. McKenzie, J. McQuillian, and D. Walden. ARPANET Completion
Report. January 1978. Map scanned by Larry Press and available at
http://som.csudh.edu/cis/lpress/history/arpamaps/.

[Klei70] L. Kleinrock. Analytic and Simulation Methods in Computer Network Design.
Spring Joint Computer Conference, AFIPS Conference Proceedings volume 36,
May 1970, pages 569–579.

[KuRo03] J. Kurose and K. Ross. Computer Networking. Addison-Wesley. 2nd edition,
2003.

[Kuro06] J. Kurose. 10 Networking Papers: Recommended Reading. ACM SIGCOMM
Computer Communication Review 36(1), 2006, pages 51–52.

[McFR78] J. McQuillan, G. Falk, and I. Richer. A Review of the Development and
Performance of the ARPANET Routing Algorithm. IEEE Transactions on
Communications COM-26(12), December 1978, pages 1802–1811.

[Sega77] A. Segall. The Modeling of Adaptive Routing in Data-Communication
Networks. IEEE Transactions on Communications COM-25(1), January 1977,
pages 85–95.

[VuGLA99] S. Vutukury and J. J. Garcia-Luna-Aceves. A Simple Approximation to
Minimum-Delay Routing. Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication, 1999,
pages 227–238.

16

http://som.csudh.edu/cis/lpress/history/arpamaps/

	Overview
	Goals of Routing Algorithms
	Characteristics of Routing Algorithms
	Goals and Characteristics of Gallager's Algorithm

	Model and Algorithm
	Model
	Conditions for Minimum Delay
	The Algorithm

	Conclusion
	Goals Achieved
	Problems
	Impact

