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Introduction: Routing Algorithms

What are they?
Why do we need them?

Road Map

@ Introduction

© Model
© Algorithm

@ Conclusion
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Goals of Routing Algorithms
Primary Goal

Achieve “good” or even optimal routing.

@ How to measure routing quality?
— Routing metrics

little network overhead

stability and reliablity

adapt to changes

quickly converge to optimal state

scale well

Characteristics

Other Characteristics
@ Single-Path vs. Multi-Path Algorithms

@ Centralized vs. Distributed Algorithms

@ User vs. System Optimization

UGl 1.1 Routing Algorithms

Characteristics

Route Calculation Time
@ Static routing algorithms

@ Dynamic routing algorithms

@ Quasi-static routing algorithms

2.1 Model Development




2.1 Model Development

Set of n nodes enumerated by {1,2,...,n}
Set of links: £ := {(4,) is existing link}

2.1 Model Development

ni(j)
Input traffic entering at ¢ and destined for j: r;(j).
e.g. in kbit/s
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ri(i)+n(j)

@j(j)=1
u(i)=3

()
Routing variables ¢(5):

Fraction of traffic destined for j travelling link (7, k).

EIN 21 Model Development

ri(§)+7(5) =)




2.1 Model Development

Constraints on ¢

@ No traffic on non-existing links and no loopback
traffic

du(j) =0 V(i,j) g Lori=]

@ No loss of traffic is allowed.

D ooul)=1 Vi
k=1

@ All nodes are inter-connected.

¢1k(]) >03‘75k1(j> >07"'7@7rlj(j) >0
Ji k... m Y]
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2.1 Model Development

t(7)=t:(j)dir (7)
o ()=3%

t:(7)=r:(4)

2.1 Model Development

Variables

Set of n nodes enumerate by {1,2,...,n}
Set of links: £ := {(4,7) is existing link}
Input traffic set 7 := {r;(j)}

Node flow set ¢ := {#;(4)}

Routing variable set ¢ := {¢(j)}.

Theorem 1

The routing variable set ¢ will actually guide the
network’s flow.

Formally: An input set r and a routing variable set
¢ uniquely define a network flow set ¢.




2.2 Markov Chain

Routing Variables

ta=r1+r3=150 kbit /s
100 kbit/s =r=t,

2.2 Markov Chain

Routing Variables

Net Fundamentals Semina

Find steady state by introducing imaginary links
which transfer traffic back to its source node.

T
Routing Variables

100 kbit/s

150, kbit/s




2.2 Markov Chain 2.2 Markov Chain

Markov Transition Matrix Markov Equation

With ¢;;(j) := E:l(rjk)(ﬁ the aggregation equation

() = rG) + Y 0 eus)
=1

@ = (dir(s))in =

ol O Ll ol

can be contracted to
The second constraint on ¢ and ¢;,(j) > 0 are the ) -
defining properties of a stochastic matrix. ti(7)

=1

Equilibrium Distribution Equilibrium in the Example

t=1®

ol O Ll
E{EEISEARI

Is the equation of a Markov chain in an equilibrium
state.

From Markov chain theory: If the transition matrix is
irreducible, then exactly one equilibrium distribution

1 exists.
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2.2 Markov Chain

Equilibrium in the Example

ri=t=100 kbit/s

2.3 Marginal Delay

Delay

Currently the model only describes traffic flow.

Now introduce delay.

Net Fundamentals Semina

2.3 Marginal Delay

Traffic and Delay

First define total traffic f;. on a link (i, k)

fi =Y ()oul)

J

Traffic and Delay

Then calculate link delay Dj.(f;) from the traffic.
Only requirements of Dj;,: convex and increasing.

For example

fik

Du(fi) = m

with link capacity Cj.




2.3 Marginal Delay

Total delay

Finally define total delay Dy

Dr = Z Dy (fir)
ik

Goal: Minimize Dr by setting optimal ¢ (j).
Use same general method as with maximizing
rectangle area function in school.
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2.3 Marginal Delay

General Method

Problem:

Find a, b = g(a) with
maximum area A.

Set first derivative to zero.

=a-b=a-g(a)
7§a2+4a
=—a’+4
A'(a) =0 for a = +V4

=b=5

Net Fundamentals Semina

2.3 Marginal Delay

Derivative of Dy

Method: Determine the derivative of Dy and find a
root.

But derive Dy by which parameter?

Dy is the sum of all delays Dj..
Each Dy is a function of the link traffic fj.
fir. is somehow determined by r, ¢ and ¢.

dDy(f;
o (f) = %

Partial Derivatives of Dy
oD
Easier: Determine partial derivative 7T
ari(j)
How does more input traffic change total delay?
pu(j) 5(25(7;)

Dig(fre) +e i () Diy. (5




2.3 Marginal Delay

Partial Derivatives of Dp

Partial derivative regarding input traffic:
D
Z ¢7k ( fik) k(j))

Calculate marginal (incremental) delay in this

example:
é aDp

2.3 Marginal Delay

Partial Derivatives of Dy

Partial derivative regarding input traffic:
dDT )
i (J fin
2> ) (Pt + 7t

Calculate marginal (incremental) delay in this

example:
aD. aD.

, op
e = Pu=l =0

2.3 Marginal Delay

Partial Derivatives of Dy

However a future algorithm should change routing
variables ¢;.(7).

So determine their change to delay: d;‘f( 5

() aly

o
Finding a Root

oDy (. Dy
oot = i) Dith) + 3

Find a stationary point of Dy regarded as a function
of ¢4(4) in which all =0 (VDr(¢) =0).

However ¢ has the three constraints
= Lagrange multipliers are required.

a” i




2.4 Necessary Condition

Lagrange Multipliers

Formalize the constraints into a function g(¢) =0,
with Vg(¢) # 0.
Introduce Lagrange multipliers A and solve:

VD1(¢) = —Ag(e)
9(¢) =0

2.4 Necessary Condition

Lagrange Multipliers

Result:

ODr |=XNj, ouw()>0 ., ..
- Vi V(i k) e L
amm{z% ouli) =0 IV

Note that the A;; do not depend on k.

= All used links must have same marginal delay.
Unused must have greater marginal delay.

N

2.5 Sufficient Candition

Only Necessary

However this condition is not sufficient.
Counter-example:

Pr_y Wr_g
o oy

Sufficient Condition
Brilliant idea of Gallager: remove the factor #;(j)

dDyp
ari(j)

0Dy

< Di(fa) + ()

Intuitive reduction of delay:




Sufficient Condition
Brilliant idea of Gallager: remove the factor #;(j)

ODr

Sy < D) +

Ir(7)
Intuitive reduction of delay (Contraposition):

9Dy 9Dy
ari(j) I (j

) - - — . > Dy (fa) + . 777)@

7

2.5 Sufficient Condition

Transformation into Algorithm

aDT aDT

o) = DU T G
transformed into an iterative version useful for the
future algorithm

oD

/ 0Dt . / 0Dy
(fi T > D}, (fim
i (fir) + o) = (711"53)131;( i (fim) + )

Iru(j)

N

31 Algorithm Goal

The Algorithms Main Goal

@ Calculate new routing variables (¢)
» increase ¢, on links with small marginal delay
» decrease ¢, on links with large marginal delay
@ During iterative distributed computation:
» stable state is reached
» optimal solution is found

» no deadlock occurs

The Algorithm

@ Determine the necessary variables:

ity and Diy(fi)

@ Calculate new routing variables ¢!

> main challenge: keep ¢ loop free




3.2 Necessary Variables.

Variables Available to a Specific Node

@ A node knows:
its incoming and outgoing links
its neighbors
the amount of traffic flow (can be measured)

its routing variables for all links and destinations

RGO 3.2 Necessary Variables

Variables Available to a Specific Node

Net Fundamentals Semina

3.2 Necessary Variables

Variables Available to a Specific Node

dDp

T v
Determine Marginal Delay

@ Dj;. can be calculated or measured
@ D/ can be calculated from Dy,

o D/, more often measured

9D

o Still missing 3 o)




3.2 Necessary Variables.

Downstream Concept

@ Each node becomes ;D*

from its downstream
neighbors

@ Node £ is downstream from ¢ with respect to
destination 7, if there is a path from i to j
through £ and all routing variables on the way
down to j are positive (i.e. ¢z (j) >0 ...

¢1.5(7) > 0)

. i (7)>0 . P15 (7)>0 .

ERVEIIINN 33 Routing Variables Calculation
Routing Variables Calculation

@ Calculate new variables in three steps.

@ Determine the best link (lowest marginal delay)

@ Difference between each link & and the best
link:

) = Dilha) + o~ Diti) + )

on link k& on the best link

N

Routing Variable Reduction

Aji,(4): the reduction of routing variable ¢y (7)

Ajr(j) = min {g‘),,k(j), #a,g(;)}

with a small scale factor 7.

The New Routing Variables

S (d) — Ai(d),
if (i, k) is not the best link

+ D Al

(i,m)el
m#b

if (i, k) is the best link
and therefore k = b

oi(j) = Pal




ER 34 Loop Freedom

Blocked Set

@ Blocked set B;(j): restrict flow from node i
> require: o (j) =0V k € Bi(j)

@ Nodes included in B;(j)
» nodes, which do not have link to node 7

» neighbors, which have downstream paths containing
a loop

ELVECIR 34 Loop Freedom

Improper Routing Variables

A routing variable ¢;,(j) is defined as improper if

0Dy < 0Dy

9uli) >0 and ZiTs <50

improper
if ¢21>0

Net Fundamentals Semina

Blocked Set Definition

Formally B;(j) includes all nodes %, for which

¢i(7) = 0 and k can route packets to j over a path
that contains some link (1, m) with improper ¢y, (j)
and ¢},,(5) > 0.

Example

. aDp
Dé,‘:z dry(4)

Do W

=0

(]mplf)p( 1)

d”<4 =3




3.4 Loop Freedom

Theorem 5

For every Dy > 0
there exists a scale factor 7 for the algorithm A,
such that if ¢° satisfies Dy (¢°) < Dy, then

lim Dy (A™(¢)) = IIIOIH Dr(¢)

m—o0

Proof is done via seven lemmas over four pages (of
twelve) in the paper.

ELVECIR 34 Loop Freedom

Outline of Proof

Say ¢! := A(¢) and f! the new link flow.

First goal: calculate Dp(¢') — Dy ().

Gallager uses auxiliary function (0 < A < 1):
Dr(X) = 32; Da(f) with fi = fir + MFk — fir)
and applies Taylor's remainder theorem in Lagrange
form:

o 2 a
Dr(e)-01(0) = (C52) 014 (Tor ) o)

Outline of Proof

Lemmas 1 to 4 are used to upper boun
d*Dr(\)
FPER

d%and

Concluding in lemma 5:

For Dy say M := max max Dj
0 sy i e, Dilh)
and let n := ——, then
= Wb

Dr(¢") — Dr(¢) < —m;Afu)tﬁ(J)

Outline of Proof

In lemma 6 the last lemma is used to show a strict
monotony criterion.

Let ¢ be routing variables with D7 (¢) < Dy but not
the minimum.

Then de >0 and m with 1 < m < n:

Vo s |¢— ¢f| < g1 Dp(A™($")) < Dr(o)

Proof includes a detailed analysis of the algorithm's
steps for improper links and blocked nodes.




ER 34 Loop Freedom

Outline of Proof

Let ® C R" compact euclidean space of routing
variables.

Then algorithm is a mapping A : & — @,

and Dy : ® — R a real function.

Let Dpyin minimum of Dy over ® and
Prin set of ¢ with Dr(4) = Diin-

3.4 Loop Freedom

Outline of Proof

Because @ is compact the sequence {A™(¢)} has a
convergent subsequence {¢'}.

Let ¢ = lim;_, ¢', and since Dy is continuous
Dp(¢/) = limy o Dr(¢").

Left to prove: D7 (¢') = Diin.

Follows from Dp(A™(¢)) < Dr(9).

ELVECIR 34 Loop Freedom

Outline of Proof

Problems

o First drawback: required scale parameter 7
@ How can the start state be determined?
@ What if links or nodes are dropped or added?

@ Adapting to changing input traffic statistics.




Conclusion

@ Rigorous mathematical approach

@ Well designed mathematical model:
» describe the minimum total delay problem
» conditions for achieving global optimization
@ lterative, distributed routing algorithm

» proved in detail that the algorithm will always
progress into a network state with total minimum

delay

@ 209 citations on Google Scholar, 55 on Citeseer.

n and Dimitar Yordar
rahe (TH), Wint




