Robert Gallager's Minimum Delay Routing Algorithm Using Distributed Computation

 ${\sf Timo\ Bingmann\ and\ Dimitar\ Yordanov}$

Decentralized Systems and Network Services Research Group Institute of Telematics, Universität Karlsruhe

January 29, 2007

1 Introduction 1.1 Routing Algorithms

Timo Bingmann and Dimitar Yordanov - 1 Universität Karlsruhe (TH), Winter 2006/07

Introduction: Routing Algorithms

What are they?

Why do we need them?

Road Map

- Introduction
- Model
- Algorithm
- Conclusion

Net Fundamentals Semina

Timo Bingmann and I Universität Karlsruhe (1

ARPANET LOGICAL MAP, MARCH 1977

Timo Bingmann and Dimitar Yordanov - 3 Universität Karlsruhe (TH), Winter 2006/07 Timo Bingmann and Dimitar Yordanov Universität Karlsruhe (TH) Winter 2006 / 0

1 Introduction 1.1 Routing Algorithms Goals of Routing Algorithms Characteristics Primary Goal Achieve "good" or even optimal routing. • How to measure routing quality? Route Calculation Time → Routing metrics Static routing algorithms Other Aims Dynamic routing algorithms little network overhead Quasi-static routing algorithms stability and reliablity adapt to changes quickly converge to optimal state scale well Model Characteristics Other Characteristics Single-Path vs. Multi-Path Algorithms Centralized vs. Distributed Algorithms User vs. System Optimization

No traffic on non-existing links and no loopback traffic $\phi_{ik}(j) = 0 \quad \forall (i,j) \notin \mathcal{L} \text{ or } i = j$

2.1 Model Development

$$\phi_{ik}(j) = 0 \quad \forall (i,j) \notin \mathcal{L} \text{ or } i = j$$
No loss of traffic is allowed

$$\sum_{k=1} \phi_{ik}(j) = 1 \quad \forall i, j$$

All nodes are inter-connected.

$$\phi_{ik}(j) > 0, \phi_{kl}(j) > 0, \dots, \phi_{mj}(j) > 0$$

 $\exists i, k, l, \ldots, m, j \forall i, j$

Variables

- Set of n nodes enumerate by $\{1, 2, \ldots, n\}$ Set of links: L := {(i, j) is existing link}
- Input traffic set r := {r_i(j)}
- Node flow set t := {t_i(j)} Routing variable set φ := {φ_{ik}(j)}.

Model

 $\phi_{ik}(j) =$

 $\phi_{il}(j) =$

$$t_i(j) = r_i(j) \longrightarrow i$$

network's flow

Theorem 1

 $t_i(j) = r_i(j) + \sum t_l(j)\phi_{li}(j)$

2.1 Model Developme

 $t_k(j)=t_i(j)\phi_{ik}(j)$

 $\phi_{ki}(j) = \frac{2}{3}$

 $\phi_{lj}(j)=1$

 $\phi_{kl}(j) = \frac{1}{2}$

The routing variable set
$$\phi$$
 will actually guide the

network's flow.
Formally: An input set
$$r$$
 and a routing variable set ϕ uniquely define a network flow set t .

 $j \rightarrow r_i(j)+r_l(j)=t_i(j)$

 $t_l(i) = r_l(i) + t_i(i)\phi_{il}(i) + t_k(i)\phi_{kl}(i)$

With $\phi_{ji}(j) := \frac{r_i(j)}{\sum_i r_k(j)}$ the aggregation equation

 $t_i(j) = r_i(j) + \sum_{l=1}^{n} t_l(j)\phi_{li}(j)$

can be contracted to

 $\bar{t} = \bar{t}\Phi$

$$ar{t}=ar{t}\Phi$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\Phi = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & \frac{1}{3} & \frac{2}{3}\\ 0 & 0 & 0 & 1\\ \frac{2}{3} & 0 & \frac{1}{3} & 0 \end{pmatrix} \quad \lim_{n \to \infty} \Phi^n = \begin{pmatrix} \frac{\frac{1}{25}}{25} & \frac{\frac{3}{25}}{25} & \frac{\frac{1}{25}}{25} & \frac{\frac{3}{25}}{25}\\ \frac{\frac{6}{25}}{25} & \frac{\frac{3}{25}}{25} & \frac{\frac{7}{25}}{25} & \frac{\frac{3}{25}}{25} \\ \frac{\frac{6}{25}}{25} & \frac{\frac{3}{25}}{25} & \frac{\frac{7}{25}}{25} & \frac{\frac{9}{25}}{25} \end{pmatrix}$$

$$\bar{t} = \bar{t}\Phi$$
 Is the equation of a Markov chain in an extate.

$$\bar{t}=\bar{t}\Phi$$
 Is the equation of a Markov chain in an equilibrium state. From Markov chain theory: If the transition matrix is

The second constraint on
$$\phi$$
 and $\phi_{ik}(j) \geq$ defining properties of a stochastic matrix.

The second constraint on
$$\phi$$
 and $\phi_{ik}(j) \geq 0$ are the defining properties of a stochastic matrix.

$$\left(\begin{array}{ccc} \frac{2}{3} & 0 & \frac{1}{3} & 0 \end{array}\right)$$
 The second constraint on ϕ and $\phi_{ik}(j) \geq 0$ defining properties of a stochastic matrix.

$$\Phi = (\phi_{ik}(j))_{i,k} = \begin{bmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 & 1 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 \end{bmatrix}$$
The second constraint on ϕ and $\phi_{ik}(j) \geq 0$

Markov Transition Matrix

$$\Phi = (\phi_{ik}(j))_{i,k} = \begin{pmatrix} 0 & \frac{7}{2} & \frac{7}{2} & 0\\ 0 & 0 & \frac{1}{3} & \frac{2}{3}\\ 0 & 0 & 0 & 1\\ \frac{2}{3} & 0 & \frac{1}{3} & 0 \end{pmatrix}$$

$$_{,k} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$t_i(j)$$

Markov Equation

$$t_i(j) = r$$

$$\overline{l=1}$$
 ed to

$$t_i(j) = \sum_{l=1}^{n} t_l(j)\phi_{li}(j) \quad \Leftrightarrow \quad \overline{t} = \overline{t}\Phi$$

$$\begin{array}{cccc}
\frac{3}{25} & \frac{7}{25} & \frac{9}{25} \\
\frac{3}{25} & \frac{7}{25} & \frac{9}{25}
\end{array}$$

$$\begin{pmatrix} 100 \\ 50 \end{pmatrix}$$

From Markov chain theory: If the transition matrix is irreducible, then exactly one equilibrium distribution
$$\bar{t}$$
 exists.

$$\Rightarrow \bar{t}' = \begin{pmatrix} \frac{6}{25} \\ \frac{3}{35} \\ \frac{7}{25} \\ \frac{9}{25} \end{pmatrix} \qquad \Rightarrow \quad \bar{t} = \begin{pmatrix} 100 \\ 50 \\ 116\frac{1}{3} \\ 150 \end{pmatrix} \text{ kbit/s}$$

Finally define total delay D_T

$$D_T = \sum_{i,k} D_{ik}(f_{ik})$$

Goal: Minimize D_T by setting optimal $\phi_{ik}(i)$.

Use same general method as with maximizing rectangle area function in school.

Derivative of D_T

Method: Determine the derivative of D_T and find a root

But derive D_T by which parameter?

 D_T is the sum of all delays D_{ik} . Each D_{ik} is a function of the link traffic f_{ik} . f_{ik} is somehow determined by r, t and ϕ .

$$D'_{ik}(f_{ik}) = \frac{\mathrm{d}D_{ik}(f_{ik})}{\mathrm{d}f_{ik}}$$

 $A'(a) = -a^2 + 4$ A'(a) = 0 for $a = \pm \sqrt{4}$

 $\Rightarrow b = 5$

General Method Problem:

> maximum area A. Set first derivative to zero.

Find a, b = q(a) with

 $A(a) = a \cdot b = a \cdot q(a)$

 $=-\frac{1}{2}a^2+4a$

Partial Derivatives of D_T

2.3 Marginal Delay

a

0

Easier: Determine partial derivative $\frac{\partial D_T}{\partial r_i(i)}$

s of
$$D_T$$

Partial derivative regarding input traffic:

$$\frac{\partial D_T}{\partial r_i(j)} = \sum \phi_{ik}(j) \left(D'_{ik}(f_{ik}) + \frac{\partial D_T}{\partial r_i(j)} \right)$$

Calculate marginal (incremental) delay in this

example:
$$r_1 \xrightarrow{\frac{\partial D_T}{\partial r_1}} \underbrace{\begin{array}{c} \phi_{13} = \frac{1}{2} \\ D_{13}' = 1 \\ D_{13}' = 1 \\ \end{array}}_{D_{13}' = 1} \underbrace{\begin{array}{c} \frac{\partial D_T}{\partial r_1} \\ D_{34}' = 3 \\ \end{array}}_{D_{24}' = 1} \underbrace{\begin{array}{c} \frac{\partial D_T}{\partial r_1} \\ D_{13}' = 1 \\ \end{array}}_{D_{12}' = 2} \underbrace{\begin{array}{c} \frac{\partial D_T}{\partial r_2} \\ D_{23}' = 3 \\ \end{array}}_{D_{24}' = 4} \underbrace{\begin{array}{c} \frac{\partial D_T}{\partial r_1} \\ D_{23}' = 3 \\ \end{array}}_{D_{24}' = 4} \underbrace{\begin{array}{c} \frac{\partial D_T}{\partial r_2} \\ D_{24}' = 4 \\ \end{array}}_{D_{24}' = 4}$$

Partial Derivatives of
$$D_T$$

However a future algorithm should change routing

variables $\phi_{ii}(i)$. So determine their change to delay: $\frac{\partial D_T}{\partial \phi_{ij}(i)}$

Partial Derivatives of D_T Partial derivative regarding input traffic:

artial derivative regarding input traffic:
$$\frac{\partial D_T}{\partial r_i(j)} = \sum \phi_{ik}(j) \left(D'_{ik}(f_{ik}) + \frac{\partial D_T}{\partial r_i(j)} \right)$$

Calculate marginal (incremental) delay in this $\phi_{34} = 1$

Finding a Root

$$\frac{\partial D_T}{\partial \phi_{ik}(j)} = t_i(j) \left(D'_{ik}(f_{ik}) + \frac{\partial D_T}{\partial r_k(j)} \right)$$

Find a stationary point of D_T regarded as a function of $\phi_{ik}(j)$ in which all $\frac{\partial D_T}{\partial \phi_T(j)} = 0$ $(\nabla D_T(\phi) = 0)$.

However ϕ has the three constraints ⇒ Lagrange multipliers are required.

Formalize the constraints into a function $q(\phi) = 0$, with $\nabla q(\boldsymbol{\phi}) \neq 0$.

Introduce Lagrange multipliers λ and solve:

$$abla D_T(\phi) = -\lambda g(\phi)$$
 $g(\phi) = 0$

Only Necessary

However this condition is not sufficient.

Counter-example:

Result:

$$\frac{\partial D_T}{\partial \phi_{ik}(j)} \begin{cases} = \lambda_{ij}, & \phi_{ik}(j) > 0 \\ \ge \lambda_{ij}, & \phi_{ik}(j) = 0 \end{cases} \quad \forall i \neq j \ \forall (i, k) \in \mathcal{L}$$

Note that the λ_{ii} do not depend on k. ⇒ All used links must have same marginal delay.

Unused must have greater marginal delay.

Sufficient Condition Brilliant idea of Gallager: remove the factor $t_i(j)$

 $\frac{\partial D_T}{\partial r_i(i)} \le D'_{ik}(f_{ik}) + \frac{\partial D_T}{\partial r_i(i)}$

$$rac{\partial r_i(j)}{\partial r_i(j)} \leq D_{ik}(f_{ik}) + rac{\partial r_i(j)}{\partial r_i(j)}$$
 witive reduction of delay:

Intuitive reduction of delay:

$$t_{i}(j) - - - - \underbrace{\left(j\right)}^{\frac{\partial D_{T}}{\partial r_{i}(j)}} \underbrace{\frac{\partial D_{T}}{\partial r_{k}(j)}}_{t_{k}(f_{ik}) + \underbrace{\left(k\right)}_{t_{k}} - - - \underbrace{\left(j\right)}_{t_{k}}$$

Sufficient Condition

 $\frac{\partial D_T}{\partial r_i(i)} \le D'_{ik}(f_{ik}) + \frac{\partial D_T}{\partial r_i(i)}$

Brilliant idea of Gallager: remove the factor $t_i(j)$

2 Model 2.5 Sufficient Condition

$$t_i(j) - \cdots$$
 $j > D'_{ik}(f_{ik}) + k - \cdots$ j

The Algorithms Main Goal

- Calculate new routing variables (ϕ_{ik})
 - increase φ_{ik} on links with small marginal delay
 - decrease φ_{ik} on links with large marginal delay
- During iterative distributed computation:
- - stable state is reached optimal solution is found
 - no deadlock occurs

$\frac{\partial D_T}{\partial r_i(i)} \le D'_{ik}(f_{ik}) + \frac{\partial D_T}{\partial r_i(i)}$

transformed into an iterative version useful for the future algorithm

$$D'_{ik}(f_{ik}) + \frac{\partial D_T}{\partial r_k(j)} \ge \min_{(i,m) \in \mathcal{L}} \left(D'_{im}(f_{im}) + \frac{\partial D_T}{\partial r_m(j)} \right)$$

The Algorithm

- Determine the necessary variables: $\frac{\partial D_{ik}}{\partial r_i(i)}$ and $D'_{ik}(f_{ik})$
- \bigcirc Calculate new routing variables ϕ^1
 - main challenge: keep φ loop free

- ► its incoming and outgoing links
 - ► its neighbors

Net Fundamentals Seminar

- ▶ the amount of traffic flow (can be measured)
- its routing variables for all links and destinations

Variables Available to a Specific Node

Universitie Seninar 1 Algorithm 3.2 Necessary Variables Variables Available to a Specific Node

Determine Marginal Delay

• D'_{ik} can be calculated from D_{ik}

D_{ik} can be calculated or measured

- ...
- D'_{ik} more often measured
- ullet Still missing $rac{\partial D_{ik}}{\partial r_i(j)}$

neighbors

 $\phi_{l_n i}(j) > 0$

• Each node becomes $\frac{\partial D_{ik}}{\partial r_i(j)}$ from its downstream

Node k is downstream from i with respect to

destination i, if there is a path from i to i

through k and all routing variables on the way down to j are positive (i.e. $\phi_{il_1}(j) > 0$...

Determine the best link (lowest marginal delay)

Difference between each link k and the best

link.

$$a_{ik}(j) = \underbrace{D'_{ik}(f_{ik}) + \frac{\partial D_T}{\partial r_k(j)}}_{\text{on link } k} - \underbrace{\left(D'_{ib}(f_{ib}) + \frac{\partial D_T}{\partial r_b(j)}\right)}_{\text{on the best link}}$$

Routing Variable Reduction

with a small scale factor n.

 $\Delta_{ik}(j)$: the reduction of routing variable $\phi_{ik}(j)$ $\Delta_{ik}(j) = \min \left\{ \phi_{ik}(j), \frac{\eta}{t_i(j)} a_{ik}(j) \right\}$

ble
$$\phi_{ik}(j)$$
 $\left\{ a_{ik}(j)
ight\}$

The New Routing Variables

$$\phi_{ik}^{1}(j) = \begin{cases} \phi_{ik}(j) - \Delta_{ik}(j), & \text{if } (i,k) \text{ is not the best link} \\ \phi_{ib}(j) + \sum_{\substack{(i,m) \in \mathcal{L} \\ m \neq b}} \Delta_{im}(j), & \text{if } (i,k) \text{ is the best link} \end{cases}$$

and therefore k = b

Universität Karlsruhe (TH), Winter 2006/0

Blocked Set

- Blocked set B_i(j): restrict flow from node i
 - require: φ_{ik}(j) = 0 ∀ k ∈ B_i(j)
- Nodes included in B_i(i)
 - nodes, which do not have link to node i
 - neighbors, which have downstream paths containing a loop

Blocked Set Definition

Formally $B_i(j)$ includes all nodes k, for which $\phi_{ik}(j) = 0$ and k can route packets to j over a path that contains some link (l, m) with improper $\phi_{lm}(j)$ and $\phi_{lm}^{1}(j) > 0$.

A routing variable $\phi_{ik}(i)$ is defined as improper if

 $\phi_{ik}(j) > 0$ and $\frac{\partial D_T}{\partial r_i(j)} \leq \frac{\partial D_T}{\partial r_i(j)}$

Improper Routing Variables

Example

 $D'_{13}=1$

 $D'_{24}=2$ $\phi_{24}(4)=1$ $D'_{34}=1$

 $\phi_{13}(4)=0$ $D'_{31}=1$ $\phi_{34}(4) = \frac{1}{2}$ $\phi_{31}(4) = \frac{1}{2}$ (improper)

Outline of Proof Say $\phi^1 := A(\phi)$ and f^1 the new link flow.

Proof is done via seven lemmas over four pages (of

First goal: calculate $D_T(\phi^1) - D_T(\phi)$. Gallager uses auxiliary function ($0 \le \lambda \le 1$):

 $D_T(\phi^1) - D_T(\phi) = \left(\frac{\mathrm{d}D_T(\lambda)}{\mathrm{d}\lambda}\right)(0) + \frac{1}{2}\left(\frac{\mathrm{d}^2D_T(\lambda)}{\mathrm{d}\lambda^2}\right)(\lambda^*)$

 $D_T(\lambda) = \sum_{i,k} D_{ik}(f_{ik}^{\lambda})$ with $f_{ik}^{\lambda} = f_{ik} + \lambda(f_{ik}^1 - f_{ik})$

and applies Taylor's remainder theorem in Lagrange

form:

Outline of Proof

In lemma 6 the last lemma is used to show a strict

Universität Karlsruhe (TH), Winter 2006/0

Then $\exists \varepsilon > 0$ and m with 1 < m < n:

 $\forall \phi^* : |\phi - \phi^*| < \varepsilon : D_T(A^m(\phi^*)) < D_T(\phi)$

Proof includes a detailed analysis of the algorithm's steps for improper links and blocked nodes.

monotony criterion. Let ϕ be routing variables with $D_T(\phi) < D_0$ but not

the minimum.

Lemmas 1 to 4 are used to upper bound $\frac{dD_T(\lambda)}{d\lambda}$ and

such that if ϕ^0 satisfies $D_T(\phi^0) \leq D_0$, then $\lim_{m \to \infty} D_T(A^m(\phi)) = \min_{\phi} D_T(\phi)$

there exists a scale factor η for the algorithm A,

Theorem 5

Outline of Proof

Concluding in lemma 5:

and let $\eta := \frac{1}{M_{\rm m}6}$, then

For D_0 say $M := \max_{i,k} \max_{f:D_{ik}(f) \leq D_0} D''_{ik}(f)$

 $D_T(\phi^1) - D_T(\phi) \le -\frac{1}{2\eta(n-1)^3} \sum_{i,j} \Delta_i^2(j) t_i^2(j)$

For every $D_0 > 0$

twelve) in the paper.

Let $\Phi \subseteq \mathbb{R}^n$ compact euclidean space of routing variables. Then algorithm is a mapping $A: \Phi \to \Phi$,

and $D_T:\Phi\to\mathbb{R}$ a real function. Let D_{\min} minimum of D_T over Φ and

 Φ_{\min} set of ϕ with $D_T(\phi) = D_{\min}$.

$\Phi_{\rm min}$ $A(\phi) = \phi^1$

Outline of Proof

Because Φ is compact the sequence $\{A^m(\phi)\}$ has a convergent subsequence $\{\phi^l\}$. Let $\phi' = \lim_{l \to \infty} \phi^l$, and since D_T is continuous

 $D_T(\phi') = \lim_{l \to \infty} D_T(\phi^l).$ Left to prove: $D_T(\phi') = D_{\min}$. Follows from $D_T(A^m(\phi)) < D_T(\phi)$. **Problems**

- First drawback: required scale parameter n
- How can the start state be determined?
- What if links or nodes are dropped or added?
- Adapting to changing input traffic statistics.

Conclusion

- Rigorous mathematical approach
- Well designed mathematical model:
 - · describe the minimum total delay problem
 - conditions for achieving global optimization
- Iterative, distributed routing algorithm
 - proved in detail that the algorithm will always progress into a network state with total minimum delay
- 209 citations on Google Scholar, 55 on Citeseer.

Net Fundamentals Seminar

imo Bingmann and Dimitar Yordanov - ! niversität Karlsruhe (TH), Winter 2006/0