Name Service Design
in a Multi-Server Operating System

Konstantin Bender, Anton Hergenroder,
Timo Bingmann

June 1, 2006

Roadmap
Goals

Name Catalogs
m Object Representation

m Catalogs

IDL Interfaces
m Resolve Interface

m Bind Interface

Extensions / ldeas

June 1, 2006

2 /31

Goa

Goals

Unified Name Space of Objects

Is

June 1, 2006

3/31

Goals: Human Name Space

User and programs can browse and lookup

objects.

Consequences

m Names are human readable strings.

m Hierarchical name space
(humans love to categorize things)

m Performance is important.
— minimize IPC calls

June 1, 2006

4 /31

Goals: Flexibility

Store arbitrary objects in the name space.

We take a look at potential objects in L4:

threads
services
address spaces
tasks

files

others

(the usual suspects)

Goals June 1, 2006 5/31

Goals: Simplicity / Unification

Simple to implement for naming client and
naming server.

m \We want to use it.

m We want server to be able to easily participate
in the name space.

m A client can browse the name space without
knowledge of every object type.

Goals June 1, 2006 6 /31

Object Representation

Potential objects:

m threads

W services

m address spaces
m tasks

m files

m others

Name Catalogs

June 1, 2006

7/31

Object Representation

All are identifiable by

object type possibly an IDL interface
object server location of the object
object handle 4 byte opaque value

Write as (type, server, handle) tuple.
Fixed length for all objects.

Name Catalogs

June 1, 2006

8 /31

Catalogs

A name gets bound to an object.

ns-slides.pdf — (file_typeid, 42, 512)

Name Catalogs June 1, 2006 9 /31

Catalogs

A name gets bound to an object.

Group multiple names into a catalog.

ns-slides.pdf — (file_typeid, 42, 512)
ns-slides.tex — (file_typeid, 42, 513)
notes.txt — (file_typeid, 42, 515)

Simple map of strings to objects.

Name Catalogs June 1, 2006 9 /31

Depth

Create depth by introducing a special object type:

catalog

(think of it as directory)

Name Catalogs June 1, 2006 10 / 31

Depth

Create depth by introducing a special object type:

catalog

object type the name service interface itself
object server the name server serving the directory
object handle a catalog id within the server

Name Catalogs June 1, 2006 10 / 31

Depth: Subcatalogs

Catalog 20

slides.pdf (File, 42, 344) atdenth ens (File 32 345
pics (Catalog, 0, 20)j- N pth.eps (File, 32, 345)

idl (Catalog, 0 ,21)

Catalog 21

nameservice.idl (File, 32,346)

Name Catalogs June 1, 2006 11 /31

Depth: Mount Points

NameServer 0

NameServer 1 (TaskServer)

tasks (Catalog, 1, 0) Catalog 0

fs1 (Catalog, 2, 0) ~{| 100 (Task, 1, 100)
services (Catalog, 0, 20)

NameServer 2 (FileServerl)
Catalog 0

Name Catalogs June 1, 2006 12 /31

Depth: Catalog Hard-Links

NameServer 0

services (Catalog, 0, 20)

serv. (Catalog, 0, 20)

Catalog 20

logger (...)

diskdriver (...)

Name Catalogs

June 1, 2006

13 / 31

Infinite Depth

Problem

Name space can be a cyclic graph.

Recursive name space walk will run into an infinite

loop.

home

fsl

fs2

mount

Name Catalogs

June 1, 2006

14 / 31

Depth: Closure

Define a Root Name Server.

Straight-forward: define fixed thread id.

Implemented as a constant in the name resolve
library.

Catalog closure: root catalog on each name server
has Catalogld O.

Name Catalogs June 1, 2006 15 /31

Root Name Server

RootNameServer

Catalog 0

The Root Name Server
implements the base
catalog system.

Serverl Server3

m Servers can register objects directly.
—s fast single call resolve

m Other name servers can create mount points.
— distributed autonomous name spaces

Name Catalogs June 1, 2006 16 / 31

IDL Interfaces

We provide two name service interfaces:

Resolve Implemented by all name servers.

Bind Available in the root name server and
others.

IDL Interfaces June 1, 2006

17 / 31

Resolve Interface

module NamingService

{
struct NameEntry_t
{
unsigned long type;
L4_ThreadId_t server;
unsigned long handle;
s

typedef unsigned long Catalogld_t;

typedef string StringEntry_t;
typedef sequence<StringEntry_t> Stringlist_t;

typedef sequence<NameEntry_t> NameEntryList_t;
s

IDL Interfaces June 1, 2006

18 / 31

Resolve Interface

module NamingService

{
interface Resolve
{
void Resolve(in CatalogId_t catalogld,
in string path,
out NameEntry_t entry,
out long consumedChars)
raises(NotFound, InvalidCatalogId) ;

void List(in CatalogId_t catalogld,
out Stringlist_t entryNames,
out NameEntryList_t entries)
raises(NotFound, InvalidCatalogId);
s
s

IDL Interfaces June 1, 2006

19 /31

Resolve

void Resolve(in Catalogld_t catalogld,
in string path,
out NameEntry_t entry,
out long consumedChars);

m Resolve starts at catalogld.

m As much of the path is resolved as possible
without crossing servers.

Components of the path are separated by /
path does not begin with a /

Raises NotFound exception at a dead-end.

IDL Interfaces June 1, 2006

Client can continue resolve on different server.

20 / 31

lterative Resolve

RootNameServer

Catalog 0

Client FileServerl

Catalog 42
|

RootNS.Resolve(0, "fs/s1/home/blah")

IDL Interfaces June 1, 2006

21 /31

lterative Resolve

RootNameServer

. — |
/

Client FileServerl

Catalog 0

Catalog 42
|

RootNS.Resolve(0, "fs/s1/home/blah")
— (Catalog, FileServerl, 42) consumed 6

IDL Interfaces June 1, 2006

21 /31

lterative Resolve

RootNameServer

Catalog 0

Client FileServerl

—— Catalog 42

==

RootNS.Resolve(0, "fs/s1/home/blah")
= (Catalog, FileServerl, 42) consumed 6

FileServerl.Resolve(42, "home/blah")
= (File, FileServerl, 629) consumed 9

IDL Interfaces June 1, 2006

21 /31

List

void List(in Catalogld_t catalogld,
out Stringlist_t entryNames,
out NameEntryList_t entries);

m Returns names and entries of the catalog.
m Used to traverse the name space graph.

m Problem: List can exceed IPC size,
sequence<string> supported?

m Solution 1: Extend IDL4
m Solution 2: Use FindFirst and FindNext

IDL Interfaces June 1, 2006

22 /31

Bind Interface

module NamingService {
interface Bind {

void Bind(in CatalogId_t catalogld,
in string path,
in NameEntry_t entry)
raises(NotAllowed, InvalidCatalogId);

void Unbind(in CatalogId_t catalogld,
in string path)
raises(NotAllowed, NotFound, InvalidCatalogId);

void Rebind(in CatalogId_t sourceCatalogld,
in string sourcePath,
in Catalogld_t destinationCatalogld,
in string destinationPath)
raises(NotAllowed, NotFound, InvalidCatalogId) ;
s
s

IDL Interfaces June 1, 2006 23 /31

Bind Interface

void Bind(in CatalogId_t catalogld,
in string path,
in NameEntry_t entry);

m Registers a new entry in the catalog.
m Automatically creates all non-existing
subcatalogs in path.

m The entry.server is considered “owner” of the

entry. Only it and the roottask can unbind the
entry.

m Auto-created subcatalogs are owned by the
name server.

IDL Interfaces June 1, 2006 24 /31

Bind Interface

void Unbind(in CatalogId_t catalogld,
in string path);

m Removes an entry from the catalog.

m The calling thread must be the owner of the
object.

m Path is resolved within the name server.

m All empty subcatalogs except the root are
automatically removed.

IDL Interfaces June 1, 2006

25 /31

Bind Interface

void Rebind(in CatalogId_t sourceCatalogld,
in string sourcePath,
in Catalogld_t destinationCatalogld,
in string destinationPath)

m Atomically changes the name of an entry.
m Paths must be within the same name server.

m Owner access restrictions apply as with bind
and unbind.

IDL Interfaces June 1, 2006

26 / 31

Security

m Currently only minimalistic security with
bind/unbind in the Root Name Server.

m First step: split up entry “owner” and entry
“maintainer’ servers.

m List returns all names regardless of access
privileges. To fix this a whole user access rights
system must be integrated into the name
service. Very Difficult.

Extensions / ldeas June 1, 2006

27 / 31

Symbolic Links

Challenge

m Symbolic Links are absolute paths or relative
components within the name space graph.

m [hey can cross name server boundaries.
Catalogs have no parent references — symlinks
cannot be implemented in the servers.

m A string cannot be returned using NameEntry_t.

Extensions / ldeas June 1, 2006

28 / 31

Symbolic Links
Possible Solution

m Regard a symlink as an object: handle is an
number referencing the link's string.

m Add a required function
string readlink(in unsigned long linkid)
to the Resolve interface.

m Handle translation of the symlink’s string in the
name client.

Very Complicated

Extensions / ldeas June 1, 2006 29 /31

FindFirst, FindNext

module NamingService {
interface Lookup
{
void FindFirst(in CatalogId_t catalogld,
out L4_Word_t cookie,
out string firstName,
out NameEntry_t firstEntry)
raises(NotFound, InvalidCatalogId);

void FindNext(in CatalogId_t catalogld,
inout L4_Word_t cookie,
out string nextName,
out NameEntry_t nextEntry)
raises(NotFound, InvalidCatalogld);
s
s

Extensions / ldeas June 1, 2006 30 /31

End

That's all folks!
Any Questions?

June 1, 2006

31/31

